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Particulate inclusions in a lamellar phase

P. Sens,1,2 M. S. Turner,3,4 and P. Pincus1,2
1Department of Physics, UCSB, Santa Barbara, California 93106
2Department of Materials, UCSB, Santa Barbara, California 93106

3Department of Chemical Engineering, UCSB, Santa Barbara, California 93106
4TCM Group, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 15 July 1996; revised manuscript received 25 November 1996!

We study theoretically the effect of colloidal inclusions in a smectic liquid crystal. Our treatment is appro-
priate for any type of particle that exerts a small force perpendicular to the nearest layers. This force may either
be outward, forming a local ‘‘bulge,’’ or inwards, pinching the neighboring membranes together. We calculate
both the distortion field and associated energy due to one such inclusion, as well as the membrane mediated
two body interaction potential. Aggregation of particles to form polydisperse disklike assemblies is treated
using a simple Flory-Huggins theory. In this case there exists a characteristic aggregate radiusAld, wherel
is the usual characteristic smectic penetration length andd is the layer spacing. A novel feature of this system
is that ‘‘large’’ disklike aggregates of this size may be formed. There is no such length for disklike aggregation
in solution, where it is difficult to obtain aggregates much bigger than the particle size. Our treatment of
aggregation neglects interaggregate interactions studied in more detail elsewhere. In this approximation, we
find that for certain systems, such as strongly segregated copolymer melts and stacks of surfactant bilayers
stabilized by electrostatic interactions, some significant aggregation is occurring. On the other hand we predict
only weak aggregation in a stack of flexible surfactants bilayers governed by the Helfrich interaction. We use
our results, combined with a simplistic mean field theory, to study an inclusion driven binding transition.
@S1063-651X~97!14803-6#

PACS number~s!: 82.65.Dp, 82.70.Dd, 87.10.1e
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I. INTRODUCTION

Lamellar phases consisting of a stack of regularly spa
membranes are formed by many different classes of
phiphilic molecules. For example, lipid surfactants in so
tion self-assemble to form bilayer membranes. The hyd
phobic tails of the surfactants form the internal part of t
membrane and are shielded from the solvent by the hy
philic head groups found at the outer surfaces@1#. Over a
wide range of temperature and concentration, these bila
stack together to form a lamellar phase@see Fig. 1~a!#.
Lamellar phases can also be found in thermotropic syst
such as diblockA-B copolymer melts. At sufficiently low
temperatures or high surface tension between the two blo
mesophases are formed containing regions rich in theA and
B species. If the two blocks are of similar size the mo
stable phase is a lamellar phase where layers ofA and B
blocks alternate@see Fig. 1~b!# @2#. The dilute surfactant
lamellar phase is of fundamental interest in the search
simple physical models to describe certain biological p
cesses, such as those involving cell membranes. Biolog
membranes are extremely complex but are, at the simp
level, a lipid bilayer with many other molecules incorporat
@3#. If we are to hope to understand biological membran
we need first to understand the properties of heterogen
membranes made up of a mixture of different surfactant m
ecules or containing embedded inclusions, such as prot
Furthermore, copolymers are commonly used for the ble
ing and the compatibilization of different polymer mo
ecules. The introduction of particles in a diblock lamel
phase might allow us to tune the properties of the phas
order to satisfy specific requirements.
551063-651X/97/55~4!/4394~12!/$10.00
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Since a lipid bilayer is a two-dimensional fluid in whic
the inclusions are free to move one may expect interacti
between them to arise, perhaps leading to collective p
cesses such as aggregation of proteins within the membra
These phenomena have been observed in biological sys
and are known to play an important role in controlling e
change between the cell and the external medium@4#.

Most of the theoretical work in this field so far has fo

FIG. 1. ~a! Smectic liquid crystal in a dilute phase of surfacta
molecules.~b! Similar phase in a diblock copolymer melt.~c! The
membranes are located using the Monge representation for the
placement fieldu~r ,z!.
4394 © 1997 The American Physical Society
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55 4395PARTICULATE INCLUSIONS IN A LAMELLAR PHASE
cused on particles residing within a single surfactant me
brane@5#, or on a pair of membranes pinched together eit
by gap junctions~particles bridging two bilayers togethe!
@6# or by optical tweezers@7#. Hydrophobic colloids, for in-
stance, may reside in the membrane interior, taking adv
tage of the protective shell formed by the hydrophilic hea
of the surfactants. The reorganization of the surfactant m
ecules due to the presence of a foreign body and the as
ated cost in deformation energy have been investigated
tensively. Such work has yielded several interest
predictions, including the possibility of a nonmonotonic i
teraction~force! between inclusions in the same layer as
function of their separation. The possibility of ordered pha
in such systems has also been suggested@5#.

Our aim in the present work is to understand the effec
a general class of heterogeneities in a multilamellar syst
These include any heterogeneities that affect the local m
brane conformation by either~i! pinching neighboring mem
branes together, or~ii ! pushing them apart. For exampl
certain proteins are now thought to form bridges or junctio
between two neighboring membranes, leading to them be
locally pinched together@8#. Recent studies concerning th
type of junction in a two layer system have shown the ex
tence of a membrane mediated interaction between the j
tions@6#. This is due to the effect that such junctions have
the fluctuation spectrum of the membranes. It is also poss
that similar bridging proteins could act to push neighbor
membranes apart, if they were larger than the layer spac
Furthermore any colloidal particle that has a purely ste
interaction with the membrane will tend to increase the m
membrane separation locally. Such colloidal particles sho
include surfactant stabilized ferrite particles, such as th
used in ferrosmectic phases@9#. We are able to study the tw
types of impurities described above within the same fram
work since, for small deformations, the smectic Hamilton
is insensitive to the sign of the local deformation. Thus
need only to define the magnitude of the local deformation~s!
for our predictions to apply to both cases~i! and ~ii ! above.

It is convenient to use a continuum theory to describe
behavior of smectic liquid crystals@10#. This description as-
sumes that one can define a continuous deformation field
the mean position of the membranes, neglecting their
crete nature, which is valid for length scales larger than
mean spacing between lamellae. For small deforma
fields, the smectic Hamiltonian can be written as an exp
sion to quadratic order in the deformation field of the lam
lae. This involves two parameters that describe the bend
and the compression of the lamellar phase~the bending and
compression moduliiK andB!. Such an expansion follow
from the symmetries of the lamellar phase and is insensi
to the precise nature of the system. The two moduliiK andB
can be calculated via molecular parameters such as the b
ing constant of a single surfactant bilayerk or the sizeN of
each blocks of a copolymer molecule and the interfacial t
sion between the two blocksgAB .

Estimation of the bending and compression modulus
be obtained for the examples cited above. The physical
gin of the smectic parameters~especially the compressio
modulusB! is quite different each case:

~i! In the case of lyotropic smectics@Fig. 1~a!#, the sur-
factant molecules self-organize into bilayers that experie
-
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strong thermal fluctuations leading to collisions betwe
membranes. Since the total surface area of each memb
can adjust itself freely the membranes have no surface
sion. Instead the shape of the membranes is controlled
their curvature modulusk @11#, which is an energy of the
order of a fewkBT in a typicalLa phase. At finite tempera
tures the fluctuations of the membranes lead to collisi
between neighboring layers, yielding an effective repuls
interaction called the Helfrich steric repulsion@12,13#. The
interaction energy per unit volumeU is a function of the
local separation between layersd and is given by

U~d!5CH

T2

kd3
, ~1!

whereCH is a numerical constant of order unity associat
with the Helfrich theory,T is the temperature, and all ene
gies are written inkB units throughout. Helfrich’s original
estimate@12# of this constant isCH53p2/128. The repulsive
interaction described by Eq.~1! tends to swell the lamella
phase or, at fixed volume fraction of surfactant, leads to
effective compressibility of the phase. The compressibi
modulusB as well as the global bending modulus per u
lengthK can be expressed by

BH.T2/~kd3!, KH5k/d, ~2!

whered is the spacing between layers.
~ii ! In the case of ionic surfactants, which are most co

monly used in polar solvent, the repulsive Coulombic int
actions play an important role in the repulsion between l
ers and can dramatically increase the compression mod
B, as well as renormalize the bending constantk @14#. In the
absence of added salt, the membranes are stiffened du
electrostatic repulsion and their fluctuations are highly
duced. In this case the Helfrich repulsion is complete
dominated by the electrostatic repulsion between membra
and for high surface density of charges, the compression
bending moduli can be expressed by

Bio.T/~d2l !, K io.T/ l , ~3!

wherel is the Bjerrum length of order 7 Å in water@15# ~thus
l!d and Bio,K io@BH ,KH!. Some recent experiments@16#
have cast doubt on the above predictions for the bending
compressional moduli of charged surfactant lamellae. Th
experiments suggest that the bending constant of one la
lae k may not be as high as predicted. Note, however, t
the exact dependence of these constants is not impo
here.

~iii ! In a lamellar phase of diblock copolymer@Fig. 1~b!#
the bending and compression moduli arise from a bala
between the stretching of the polymer chains~an entropic
effect! and the incompatibility of the two different blocks
The smectic parametersB andK can attain much larger val
ues than in the case of dilute surfactant phase, and depen
the surface tensiongAB between the two blocks and on th
sizeN of the blocks@17#:

Kc.gABh, Bc.gAB /h,

with

h.N2/3S ga

T D 1/3a, ~4!
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where h is the distance between two lamellae, which
equivalent to the thickness of the lamellae, anda a micro-
scopical size~monomer size!.

In the following, the fluctuations of the membrane arou
their equilibrium position are integrated out and we will f
cus on the mean scalar displacement of the membraneu~r ,z!
in the z direction, normal to the equilibrium~flat! layers.
This is the so-called Monge representation for the displa
ment field@18#. In this representationu is zero everywhere a
equilibrium in the absence of any heterogeneities~or defects
in the crystal structure which we neglect throughout!. The
spatial variation of the fieldu is parametrized by a vector i
the plane of the equilibrium position of the membrane~the
x-y plane! r and a coordinate normal to this planez @see Fig.
1~c!#. In a discrete representationu~r ,z! would be replaced
by the displacement of thenth membraneun~r !. In Sec. II
below we will calculate the equilibrium value ofu~r ,z! in the
presence of heterogeneities.

The Hamiltonian of the lamellar phase is obtain by sy
metry considerations. It is the so-called Landau–de Gen
Hamiltonian for smectic liquid crystals@10#, where all the
terms compatible with the symmetry of the sample un
translation and rotation have been kept up to the quadr
order in the displacement and the lowest order in its der
tives:

H05E d2r E dz
B

2
@~]zu!21l2~¹ r

2u!2# ~5!

with

l[AK

B
,

wherel is the smectic penetration length.
The remainder of the paper is organized as follows:

Sec. II A we consider the influence of a single particle on
lamellar phase. We calculate the smectic deformation fielu,
which is found to be significant inside a parabola defined
r 2.lz. We calculate as well the total energy associated w
this deformation. We extend this work in Sec. II B to deri
the indirect interactions between two particles mediated
the deformation of the lamellae. This interaction is no
monotonic, and is characterized by the same parabola a
deformation field. It is repulsive inside the parabola and
tractive outside. For two particles within the same interla
region, the interaction is always attractive and may resul
aggregation of particles in the lamellar phase. This is d
cussed in Sec. III where we calculate the energy of an
gregate as a function of its aggregation number and dev
a simple Flory-Huggins theory to describe the aggrega
process. We then focus on the case of a dilute lamellar ph
of nonionic surfactants. Solvent can be expelled fairly ea
from this type of phase, and in the particular case of partic
that pinch the membranes together, one can expect a ‘‘b
ing transition’’ to occur at high enough concentration of p
ticles. By assuming that the particles are noninteracting
predict in Sec. IV A how the mean spacing between me
branes, as can be measured by scattering experiments, v
with particle concentration. To do this we employ a mea
field theory in which d adopts a mean~constant! value
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throughout the sample. While it is not clear that this kind
mean-field treatment is entirely consistent with the nonint
acting assumption~as discussed in more detail later on! it is
nonetheless interesting to compare this result with the on
Sec. IV B, where the formation of aggregates is taken i
account, and leads to qualitatively different dependence od
with particle volume fractionF.

II. POINTLIKE INCLUSIONS IN A LAMELLAR PHASE

We consider pointlike particles, or inclusions in a lamel
phase, that fix the local spacing between two membrane
some valuedp . This value would depend on, e.g., the size
the bridging protein or colloidal particle discussed in Sec
We approximate the spatial distribution~density! of particles
r~r ! by a sum of Dirac delta functionsr(r ,z)5( i51

N d(r
2r i)d(z2zi), where~r i ,zi! is the position of thei th particle
andN the total number of particles in the sample. The co
straint introduced by the particles can be written in the c
tinuous limit: ]zuu(r i ,zi )5(d2dp)/d. With a view to includ-
ing this constraint in the Hamiltonian we first integrater]zu
over the sample:

E d2r E dzr~r ,z!
]u

]z
5N

~d2dp!

d
5const. ~6!

Hence this constraint can be introduced in the sme
Hamiltonian Eq.~5! via a Lagrange multiplierb:

H5E d2r E dz
B

2
@~]zu!21l2~¹ r

2u!21br~r ,z!]zu#.

~7!

The last term in the Hamiltonian expresses the coupling
tween the membranes and the particles. Since the Ha
tonian is written only up to quadratic order, the effect of t
inclusion, as expressed by the coupling term, is similar to
effect of a spring between two adjacent membranes.
coupling constantb is related to the spring constant, and w
be chosen later on in order to satisfy the constraint on
layer spacing@Eq. ~6!#. It should be mentioned that our con
straint is somewhat arbitrary. The parameterb can be viewed
as free parameter dependent on the microscopical detai
the particle-membrane coupling. The mean displacem
field due to the particles can be calculated by minimizing
Hamiltonian Eq.~7! with the constraint Eq.~6! ~which cor-
responds to an integration over the fluctuations of the me
branes!.

The derivation is performed in Fourier space with t
transform defined by

f ~r ,z!5E d2qrdqz
~2p!3

f qe
i ~qr•r1qzz!, ~8!

whereqr and qz are the Fourier conjugates ofr and z, re-
spectively. The Euler-Lagrange equation for the minimiz
tion of the Hamiltonian Eq.~7! yields

uq5
b

2

iqz
qz
21l2qr

4 rq , ~9!
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55 4397PARTICULATE INCLUSIONS IN A LAMELLAR PHASE
whererq is the Fourier transform of the particle distributio
function.

This is a powerful relation. With it we can calculate th
deformation~and deformation energy! of the membranes fo
a given distribution of inclusions in the smectic.

A. Deformation due to a single particle

We first evaluate the smectic deformation field due to
single pointlike particle at the origin. In this caser~r ,z!
5d~r ,z! and its transformrq51. Using Eqs.~8! and ~9! we
can calculate the deformation due to a single particle:

u~r ,z!5E d2qrdqz
~2p!3

b iqz
2~qz

21l2qr
4!
eiq•r

52
~d2dp!d

4z
exp

2r 2

4luzu
, ~10!

where the Lagrange multiplierb54p(d2dp)dl is chosen
to satisfy the constraint Eq.~6! with N51.

The deformationu~r ,z! is sketched in Fig. 2. One can se
that it is quickly damped in the radial direction and prop
gates over a long range in thez direction. The effect of the
particle is significant within a parabola defined byr 254lz.
A similar parabolic region for the deformation field is know
to exist near an edge dislocation in a smectic liquid crys
However, the precise form ofu is rather different for an edge
dislocation @10# ~which decays only asu;1/Az in the z
direction!. One can also remark that the overshoot charac
istic of the deformation profile of a two membrane syste
@5# is not observed here. The difference between the
membrane and multimembrane systems is studied elsew
@19#.

The deformation of the membranes due to the inclus
costs a certain elastic energy, which is obtained by inser
Eq. ~10! into the smectic Hamiltonian Eq.~5!. The integral
over r converges but the integral overz diverges unless we
introduce a microscopic lower cutoffzc . We choosezc.d,
which is the length scale at which the continuum smec
theory breaks down. Furthermore, since the coordinatez cor-
responds to the position of the membrane, a particle atz50
interacts via two membranes atz56d/2. As usual@10# we
necessarily neglect the contribution to the energy from m

FIG. 2. Deformation of the layers due to an inclusion in t
membrane. In this sketch, the particle is smaller than the layer s
ing and pinches two membranes together. The lateral extensio
the deformation is characterized by the parabolar 2.lz represented
by a dotted line.
a

-

l.

r-

o
ere

n
g

c

-

terial very close to the inclusionuzu,zc ~the so-called
‘‘core’’ energy!. With this cutoff included the deformation
energy takes the form

F15aAKB~d2dp!2, ~11!

wherea is a numerical factor of order unity, the value o
which depends on the precise choice of the cut
@a5p3/~2i2!, where the ratiozc/d5i#. This energy is qua-
dratic in the deformationd2dp , which means that the sam
amount of energy is required either to pinch the membra
or to swell them~if the particle is larger than the layer spa
ing!.

Note that in the case of membranes formed by neu
surfactants for which the repulsion between layers is do
nated by the Helfrich repulsion, the deformation energy is
orderkBT @see Eq.~2!# and may be of the order of the cor
energy.

B. Interaction between particles embedded in a lamellar phase

Even for particles with no direct interactions the coupli
between the particles position and the membrane defor
tion field introduces an effective interaction between the p
ticles. This can be easily understood, at least for the spe
case of two particles in the same layer, as shown in Fig
Two particles far apart@Fig. 3~a!# each create deformatio
fields and this costs roughly twice the deformation energy
when they are very close together@Fig. 3~b!#. One can thus
expect an attractive interaction between particles, as
dicted in previous work@6#. We study the interaction in a
three-dimensional stack of membranes below.

The Hamiltonian of a lamellar phase containing ma
particles@Eq. ~7!# can be rewritten to emphasize the coupli
between particles:

H5E d2qrdqz
~2p!3

B

2
~qz

21l2qr
4!US uq2 i

b

2

qz
qz
21l2qr

4 rqDU2

2E d3q

~2p!3
B

2

b2qz
2

4~qz
21l2qr

4!
rqr2q . ~12!

The first integral is similar to the unperturbed smec
Hamiltonian ~the change of variable fromuq to
uq2 ib[qz/(q z

21l2q r
4)]rq does not affect the calculation o

the partition function of the system, for example!. This inte-

c-
of

FIG. 3. Attractive interactions between two particles embedd
within the same layer.~a! Far apart, the cost in energy is twice th
cost of a single particle.~b! In close contact, the deformation i
similar to the effect of a single particle.
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gral vanishes if we neglect fluctuations and are only int
ested in the equilibrium position of the membranes~9!. The
second integral describes the membrane-mediated inte
tions between proteins and can be written in the space
convolution integral:

DH5E E d2r dz d2r 8 dz8 r~r ,z!

3G~r2r 8,z2z8!r~r 8,z8!, ~13!

whereG~r2r 8,z2z8! is the real space Green’s function d
scribing the interactions between particles with positio
~r ,z! and ~r 8,z8!. The Green’s function can be evaluated e
actly:

G~dr ,dz!5
p

4
AKB~d2dp!2

d2

~dz!2 S 12
~dr !2

4ludzu D
3exp2

~dr !2

4ludzu
, ~14!

wheredr5ur2r 8u and dz5uz2z8u define the distance be
tween particles in the radial and thez direction. The fact that
Eq. ~14! is poorly behaved in the limitdz→0 is again a
feature of our continuous description in which we invoke
microscopic cutoff size of the order of the layer spacingd in
the z direction. Two particles in the same layer can
thought of as interacting via membranes located atz56d/2.
One should remark that the total energy of a system of
particles includes as well the self-energy per particleF1 cal-
culated previously. Note that the energy scale for the in
actions, given by the factor (p/4)AKB(d2dp)

2 and the en-
ergy of an isolated particle, given by Eq.~11!, are of the
same order of magnitude.

The interaction between particles is clearly nonmonoto
~see Fig. 4!, nonetheless its behavior is still characterized
the same parabola that we observed for the deformatio
the membranes in the presence of a single inclus
r 254lz ~see Fig. 2!. Not surprisingly the interaction is als

FIG. 4. Interaction energy between two particles@in unit
AKB(d2dp)

2# as a function of their radial separation~in unit of
the layer spacingd! for two numbers of layers separating the
~third and fifth layers!. The interaction is nonmonotonic, attractiv
at large distances. The transition between attraction and repulsi
located on a parabola (r 2.lz) characteristic of smectic liquid crys
tals.
-
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similar to the interaction between two dislocations in a sm
tic liquid crystal@20#. It is attractive outside the parabola an
becomes repulsive inside.

The result~14! becomes unreliable fordr&ld because of
the singular nature of the particle distribution. A more r
fined approach, which involves a smoother particle distrib
tion @21# slightly modifies the details of the short-range i
teraction. For example, two particles in the same la
experience monotonic attraction; see Fig. 3. Although
form of the Green function@Eq. ~14!# is obtained by using
the parameterb associated to the deformation due to a sin
particle. A more refined approach would use the calculat
of b(dr ,dz) for two particles, but would modify the Gree
function only when the two particles are really close to ea
other. These details are discussed elsewhere@21#.

The two-body interactions in the smectic have been st
ied in more detail elsewhere@21#. We notice that the attrac
tive nature of the interaction between particles within t
same layer is likely to induce aggregation of particles if t
strength of the interaction is large enough to overcome
loss of entropy resulting form the aggregation.

III. AGGREGATION OF INCLUSIONS
IN A LAMELLAR PHASE

We seek to describe the aggregation of particles in
lamellar phase using a Flory-Huggins theory. We assu
that these particles can reside in dense disklike aggregat
any size. We first determine the deformation energy of s
an aggregate as a function of its size~the number of particles
in the aggregate!. Then we calculate the distribution of ag
gregate sizes and their influence on the smectic phase
function of the concentration of particles.

A. The deformation energy of a disklike aggregate
of n particles

Each aggregate is treated as a dense disklike objec
radiusa5bAn, wheren is the number of particles in the
aggregate andb the lateral size of the particle. This dis
imposes a vertical deformation on the neighboring me
branes parametrized by a lengthD @see Fig. 5~a!#. Specifi-
cally for a disk located atz50 we impose the following
boundary condition foru(r ,z50):

u~r ,z50!5D, r,a and u~r ,z50!50, r.a.
~15!

is

FIG. 5. ~a! Deformation field caused by a disklike particle o
lateral sizea@Ald and of thicknessD. ~b! 3D representation of the
deformation of the first layer.
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55 4399PARTICULATE INCLUSIONS IN A LAMELLAR PHASE
The parameterD will be chosen so that the perturbation
the closest layers~located atz56d/2! is correctly related to
the particle sizedp . Note that the boundary condition in Eq
~15! imposes a boundary condition on the layer spacing]zu
and is thus of the same kind as the boundary condition
~6!. For large enough aggregatesa*Ald the parameterD is
merely given byD5(d2dp)/2 where the factor 1/2 arise
from the symmetry in the planez50. For smaller aggregate
a larger value ofD is required, as discussed below.

The displacement field and the energy of an aggregate
calculated using a two-dimensional Fourier transform

u~r ,z!5E
0

` d2q

~2p!2
uq~z!eiq–r. ~16!

The Euler-Lagrange equation associated with the sme
Hamiltonian Eq.~5! becomes

]2uq~z!

]z2
5l2q4uq~z! ~17a!

the convergent solution of which is, forz.0,

uq~z!5uq~0!e2lq2z. ~17b!

The smectic energy depends on the Fourier transform
the boundary conditionuq~0! according to

F.BE d2qE
zc

`

dzl2q4uuq~0!u2e2lq2z

5AKBE d2qq2uuq~0!u2e2lq2zc, ~18!

wherezc.d represents the microscopic cutoff inz, below
which the continuum elastic description of the smectic liqu
crystal breaks down. The contribution due to deformation
still smaller length scales contributes to the usual ‘‘core
ergy’’ @10#, which we do not attempt to include here.

The boundary condition on the disk possesses cylindr
symmetry and the Fourier transform therefore naturally
volves Bessel functions. The boundary condition in Four
spaceuq~0! may be calculated from the real space condit
~16! using the inverse transform

uq~z!5E
0

`

rdr E
0

2p

duu~r ,z!e2 iqr cosu

5E
0

`

2pr dr J0~qr !u~r ,z!, ~19!

whereJ0 is the Bessel function of the first kind of order
The Fourier transform of the boundary condition is given

uq~0!5DE
0

a

2pr dr J0~qr !52pDa2
J1~qa!

qa
, ~20!

whereJ1 is the Bessel function of the first kind of order 1.
3D representation in the real space of the deformation of
first layers is shown in Fig. 5~b!.
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The energy of the disklike aggregate then follows fro
Eq. ~18! with x[qa a new dimensionless variable an
xc5a/Alzc.

F.AKBD2E
0

`

xdx@J1~x!#2e2~x/xc!2. ~21!

Roughly speaking the Gaussian exponential factore2(x/xc)
2

in the integral introduces a cutoff atx5xc . This high-q cut-
off corresponds to small values ofr&r c5Alzc. Thus ther
cutoff arises as a direct consequence of the one inz, to which
it is related by the parabola of Fig. 2. Equation~21! can be
evaluated exactly@22#:

F.
xc
2

2
e2xc

2/2I 1~xc
2/2!, ~22!

whereI 1 is the modified Bessel function of the first kind o
order 1. We now expand this result in the two limits~i! xc!1
and~ii ! xc@1, corresponding to aggregates~i! much smaller
~ii ! much larger thanr c , by an expansion of the Bessel fun
tion @22#

I 1~x!5 H x/21O~x3!,
~2px!21/2ex@11O~1/x!#

for x!1
for x@1. ~23!

In these limits the energy becomes

F.HAKBD2xc
4

AKBD2xc

for xc!1
for xc@1. ~24!

This expression implies that the energy is quadratic in
volumeDa2 for small disks and scales like the circumferen
of the disk for large disks. The first of these results is und
standable: The total distortion energy should scale with
perturbation volumeDa2 for small enough inclusions. Fur
thermore the lowest order contribution must be quadratic
this volume by symmetry. The second result is also to
expected: For large enough disks there should be a contr
tion per unit length of edge~it locally resembles a disloca
tion!. In order to fully understand the result Eq.~24! we need
to chooseD so that the perturbation of the closest laye
~located atz5d/2! is related to the particle size according
u(z5d/2,r50)5(d2dp)/2. Using Eqs.~16!, ~17!, and~20!
the deformation is given by

u~r ,z!5DE dxJ0S x r

aD J1~x!e2~x/xz!
2
, ~25!

wherexz[a/Alz. Evaluating this atr50, z5d/2 we find

u~0,d/2!5D~12e2a2/2ld!3H Da2/~2ld!

D
for a/Ald!1

for a/Ald@1.
~26!

HenceD is chosen as follows:

D5H ~d2dp!ld/a2

~d2dp!/2
for a/Ald!1

for a/Ald@1.
~27!

For small disks we need to choose the amplitudeD in such a
way that the volumeDa2 is constant. It is reassuring that i
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the limit a→0 we recover the delta function representation
Sec. II A. Substituting Eq.~27! into ~24! we finally obtain

F.HAKB~d2dp!2

AKB~d2dp!2a/Ald

for a/Ald!1

for a/Ald@1.
~28!

This result gives the energyEn of an aggregate containingn
individual particles

En5H EgA n

ng
for n@ng5ld/b2

Eg for n!ng

~29!

@with Eg.AKB(d2dp)
2#, whereb is the lateral radius of

one particle.
This expression may be understood with the aid of Fig

the layers in contact with the aggregate are deformed ov
lengthAld, even if the aggregate is much smaller than t
size ~n!ng!; see Fig. 6~a!. In this case the far field distor
tion, and associated energy, are insensitive to the size o
aggregate. If, on the other hand, the lateral size of the ag
gate is much larger thanAld (n@ng), the energy is linear
in the size of the aggregate; see Fig. 6~b!. The resulting
variation of the deformation energy with the aggregat
number is shown in Fig. 6~c!.

B. Aggregation of inclusions in the lamellar phase

In this section we will construct a simple model to d
scribe the aggregation of inclusions in the smectic pha
Interactions between inclusions will be included only by w
of the aggregation process itself and we will neglect inter
tions between aggregates. We first assume that the chara
istics of theLa phase~layer spacing, compressibility, etc!
are not affected by the presence of inclusions. The poss

FIG. 6. Energy of the aggregates as a function of their size.~a!
For a small aggregate, the deformation is insensitive to the siz
the aggregate.~b! For a large aggregate, the deformation is line
with the size of the aggregate.~c! Schematic representation of th
deformation energy with the aggregation number. The dashed
corresponds to the approximate expression used in the text.
f

:
a
s

he
e-

e.

-
ter-

le

variation of the layer spacingd with the concentration of
particles ~compaction of the lamellar phase! will be dis-
cussed below. We will use a Flory-Huggins theory@23# to
model the aggregation process. The concentration of
ticles in the smectic phase isC5N/V whereV is the total
volume of the phase andN the total number of particle.

The global concentration of aggregates containingn par-
ticles is writtencn ~for all integern!. The conservation of the
total number of particles leads to

(
n51

`

ncn5C. ~30!

The two-dimensional entropy of mixing of these aggrega
is calculated via a lattice theory with an elementary latt
area on the membranes ofd 2. We can employ a three
dimensional treatment by defining the lattice volume in t
smectic to be a slab of heightd and aread 2 with volume
v5d2d, which ultimately corresponds to the volume of on
inclusion times the ratiod/dp . The free energy of the lamel
lar phase per unit volume is given by

F5 (
n51

`

cnFT ln
cnv
e

1EnG , ~31!

where we assume that the system is dilute so that the vol
fractionF[Cv!1. The total free energy densityF is com-
posed of two terms including the entropy of mixing of a
gregates of all sizes and the smectic deformation energ
aggregates of all sizes. Note that since the entropy of
particles is effectively a two-dimensional entropy the term
the logarithmcnv/e is independent of the layer spacing. Th
consideration will be important in the next paragraph.

The total particle concentration is fixed by a Lagran
multiplier m. By considering the system to be in contact wi
a reservoir of particles,m may be thought of as the chemic
potential for exchange of particles between the reservoir
the system itself. This must be chosen so that the constr
Eq. ~30! is satisfied. The chemical potential is define
through the grand, or Gibbs, potentialG @24#,

G5F1 (
n51

`

ncnm. ~32!

Minimizing G with respect tocn gives the concentration
of aggregates of sizen as a function of the chemical potentia
m,

cn5
1

v
e2En2mn, ~33!

where here and below we adopt units in whichkBT51. Note
that the sign ofm is unusual. It is positive at low concentra
tion of particles and decreases as the concentration incre
As mentioned abovem can then be determined by the co
servation relation Eq.~30!. Low inclusion concentrations
correspond to high values of the chemical potential. T
chemical potential decreases as the concentration incre
with the concentrationC eventually reaching a saturatio
valueCsat, for whichm50. If yet more particles were to be
added to the system we envisage these residing in a se

of
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55 4401PARTICULATE INCLUSIONS IN A LAMELLAR PHASE
phase of dense particles~‘‘infinite’’ disklike aggregates!; if m
were ever to become negative the concentration of the lar
aggregates would diverge asn→`; see Eq.~33!.

The free energy densityF of the entire system inkBT
units is given by substituting Eq.~33! into Eq. ~31!:

F52~mC1Cagg!, ~34!

whereCagg is the total concentration of aggregates of
sizes. BothCagg and the average number of particle per a
gregate, written asn̄, are fixed bycn according to

Cagg5 (
n51

`

cn ~35!

and

n̄5
C

Cagg
, ~36!

respectively. If the average aggregation number is la
enough~n̄@1! a continuum representation may also be us
in which the sums are replaced by integrals. However,
choose to retain the discrete description in Sec. III B 2
order to be able to treat correctly the onset of aggregatio

1. Saturation of the lamellar phase

The saturation values ofC, Cagg, andn̄ can be calculated
from Eqs.~30!, ~35!, and ~36! within a continuum approxi-
mation by settingm50 in Eq.~33! and by using Eq.~29! for
the energyEn of the aggregates:

Csat5
ng
2

v
e2Eg f 1~Eg! Cagg,sat5

ng

v
e2Eg f 2~Eg!,

n̄sat5ng f 1~Eg!/ f 2~Eg!, ~37!

where f 1 and f 2 are polynomials in 1/Eg :

f 1~Eg!5
12

Eg
4 1

12

Eg
3 1

6

Eg
2 1

2

Eg
1
1

2
, ~38a!

f 2~Eg!5
2

Eg
2 1

2

Eg
11. ~38b!

In deriving Eq.~37! we have also implicitly assumed that th
volume fractionFsat[Csatv!1, i.e., that saturation occur
before the volume fraction of occupied sites approaches
close packing value. The continuum approximation us
above is a good one provided that the characteristic aggr
tion numberng is much larger than unity. This needs n
correspond to a particularly strong experimental constra
For example, the Floch-P protein @25#, which is a typical
bridging inclusion, has a lateral~projected! area of 500 Å2.
In a phase of membranes with a bending modulusk of the
order of a fewkBT this leads to characteristic aggregati
numbersng*100. The same typical numbers are found fo
lamellar phase of diblock copolymers and of ionic surfa
tants. The reference energyEg @Eq. ~11!# is rarely bigger
than a fewkBT for nonionic surfactant systems, in whic
case the saturation concentrationC.Csat may often be pre-
st

l
-

e
,
e
n
.

its
d
a-

t.

-

ceded by the high concentration limitF'1. On the other
handFsat5Csatv may be smaller than unity in the case
ionic surfactant and of copolymer lamellae.

2. Low particle concentrations

Here we are interested in the limit where the particle co
centration is small enough so that there are very few ag
gates larger thanng . This corresponds tom.1/ng ~with
ng@1! and probably covers the major range of concentrat
accessible experimentally. While we are interested in the
gime where there are very few aggregates larger thanng we
make no assumptions concerning the mean aggregation n
ber n̄ and avoid making the continuum approximation.
this case we evaluate the summations in Eqs.~30! and ~35!
using the result~33! and obtain the relations

F̂[FeEg5
e2m

~12e2m!2
, F̂agg[Caggve

Eg5
e2m

12e2m
,

n̄5
F̂

F̂agg

5
1

12e2m . ~39!

We can invert the relationF̂~m! to find the chemical poten
tial m

m52 lnR~F̂!5H F̂21/21O~F̂23/2!

2 lnF̂1O~F̂!

for F̂@1

for F̂!1,
~40!

where

R~x!5
112x2A114x

2x
. ~41!

In the limit of very low concentrationF̂!1 there is essen
tially no aggregation, the particles are independent and
chemical potential satisfies the ideal gas law:m52Eg2lnF.
The aggregates are instead large 1!n̄!ng for intermediate
concentrations 1!F̂!n g

2. In this case our results are iden
tical to those describing the size distribution of wormlik
micelles, whereEg corresponds to the scission energy~the
cost of creating two end caps on the worm! @26#. The worm-
like and disklike descriptions only diverge whenF̂.ng

2 and
disks with sizesn*ng start to appear. At this point the en
ergy per diskEn is no longer constant; see Eq.~29!.

As a first approximation, we assume that the inclusions
not affect the characteristics of the lamellar phase, the la
spacingd is kept constant as the concentrationC increases.
Significant aggregation can occur if the variableF̂5FeEg is
bigger than 1. For this to occur withF!1, the energy
Eg5E0(d2dp)

2/d2 has to reach severalkBT. The energy
E05aAK0B0d

2 can be evaluated in the typical cases co
sidered so far. In the case of a diluteLa phase of nonionic
surfactants stabilized by the Helfrich steric interactio
E05aACHT is independent of the bending modulus of t
membranesk and depends mainly on the numerical fact
introduced in Eq.~11!. This energy is of order a fewkBT and
only weak aggregation is to be expected in this case. In
case of a diblock copolymer lamellar phase, the energyE0 is
proportional to the surface tension between the two blo
gAB @Eq. ~4!# and can easily reach 30kBT. In this case, sig-
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nificant aggregation may occur for low volume fraction
inclusions. In the case of highly charged membranes, form
by ionic surfactants, the energy is largeE0.(d/ l )T and ag-
gregation is to be expected.

Finally, let us remark that the so-called core energy as
ciated, for instance, to a possible reorganization of the
factants around the inclusion, may renormalize the chem
potential. This effect tends to favor aggregation~the self-
energy of each particle being increased by the core ene!
but is not expected to be a sufficiently important effect
alter our conclusions.

IV. ‘‘BINDING TRANSITION’’ IN A LAMELLAR PHASE
CONTAINING JUNCTION PARTICLES

A lyotropic lamellar phase formed from a dilute solutio
of surfactant can be found in both a bound and an unbo
phase@27#. The transition between the two phases is usua
driven by the Van der Waals interaction. Below a critic
value of the Hamaker constant, the lamellar phase is
bounded and the layer spacing is fixed only by the glo
concentration of surfactants. If the Hamaker constan
above the critical value, a bound lamellar phase can be
served. The value of the layer spacing is then fixed by
balance between the Van der Waals attraction and, for
ample, the Helfrich repulsion between the layers in the c
of nonionic surfactants. In the case of charged bilayers in
absence of salt~unscreened electrostatic interactions! dis-
cussed in the Introduction, the repulsion between the lay
is much stronger than in the Helfrich regime. For layer sp
ing larger than the bilayer thickness, the Van der Waals
traction cannot overcome the repulsion and the lame
phase is always in the unbound state. In the case of a d
lamellar phase of diblock copolymer, the compaction eff
should be negligible because of the absence of solvent.

We present below a study of the compaction of an
bound lamellar phase driven by bridging inclusions.

A. Nonaggregating particles

We first considerN independent particles. The deform
tion energy due to each particle is expressed by the en
F1 derived in Sec. II@Eq. ~11!#. The energy is of course
minimal if the layer spacing isdp , however, such a globa
compression of the sample would lead to a large increas
collisions between membranes and thus to a large cos
compression energy. We account for this fact by writing
total energy of theLa phase as follows:

F5nBV1NF1 , ~42!

where the first term of the right hand side is the energy o
global compression and wheren is a numerical factor of
order 1@28#.

The layer spacing of the phase without inclusionsd0 is
fixed by the total volume of the sampleV0. The balance
between the Helfrich repulsive force and the particle indu
attraction leads to a binding transition at some particle c
centrationĈ. ForC.Ĉ the equilibrium spacing in the smec
tic phased is smaller thand0 and varies with the particle
concentration. We employ a mean-field treatment in whicd
adopts a constant mean value throughout the smectic.
d
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assumption is rather crude in that it probably requires t
the particles’ deformation fields are at least starting to ov
lap significantly, in which case the noninteracting assum
tion is already starting to break down. However, a treatm
based on this kind of mean field assumption does see
natural choice for a preliminary study of these systems.
will also make a simplifying assumption regarding the pha
behavior. We assume that whend,d0 two phases exist and
they correspond to a smectic, with layer spacingd occupying
a volume V, and pure solvent in the remaining volum
V02V. Reassuringly recent experiments@25# on just such a
system report a separation into a dense lamellar phase an
almost pure solvent phase. A calculation of the full pha
behavior probably also requires an improvement of
mean-field treatment and is beyond the scope of this wo
Within this model the free energy ofN independent particles
is given by

F5nB0V0S d0d D 21aNAK0B0d0
2S d2dp

d D 2. ~43!

In this expression, we have expressed explicitly thed depen-
dence of the various terms by using the relations Eq.~2!. The
lengthd0 represents the layer spacing in the smectic free
particles, andX0 designates the value ofX whend5d0 . For
example, the volume of the smectic-rich phase can be wri
asV5V0(d/d0) if the number of layers in the lamellar phas
is kept constant during the compression. The first term in
~43! represents the pressure resisting a global reductio
the layer spacing. In the absence of any attractive interac
between the membranes the layer spacingd0 is fixed by the
finite surfactant concentration in the sample. The sec
term is quadratic in the difference between the layer spac
d and the relevant particle dimensiondp . It is attractive if
dp,d, i.e., for the bridging inclusions discussed in Sec.
and in this case acts to lower the spacingd. Thed spacing is
obtained by simple minimization of Eq.~43!:

d~C0!2dp5
n

al0dp

1

C0
, ~44!

where C05N/V0 is the concentration of particles in th
sample and where the penetration lengthl[AK/B can be
determined with Eqs.~2! and ~5!. This result only gives the
correct layer spacing ifd(C0),d0 whered0 is the maximum
layer spacing set by the surfactant concentration. Set
d(C0)5d0 we calculate the smallest concentrationC̃0 for
which the layer spacing can be expected to vary withC0
according to Eq.~44!. This concentration defines an avera
in-plane particle separationL̃ according toC̃0L̃

2d051. We
find L̃5Aa/n(d02dp)dpCH

21/2k/T. For typical values of
the parameters,a58, n51/12, CH53p2/128, d05200 Å,
dp550 Å, andk510 T, the lateral separation of particles
L̃'4000 Å.4Al0d0. At these separations interaction
may start to become significant.

B. Aggregating particles

We now include the results concerning the particle agg
gation~Sec. III! in our treatment of compaction of the lame
lar phase.
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55 4403PARTICULATE INCLUSIONS IN A LAMELLAR PHASE
Using Eq.~34!, we can write the free energy density
the entire system inkBT units as

F5nB0S d0d D 22~mC1Cagg!. ~45!

For low concentrations~F̂!1! there is little aggregation
and the relation Eq.~44! must be recovered. For higher co
centrations the layer spacingd is obtained by minimization
of the total free energy density Eq.~45! using the results of
Eq. ~39!.

F5nB0S d0d D 21C@ lnR~F̂!211R~F̂!#, ~46!

where the reference energyEg is itself a function of the layer
spacing

Eg5aAKB~d2dp!25E0S d2dp

d D 2,
with

E05aAK0B0d0
2.

~47!

The equilibrium layer spacing in the smectic phase is the
fore given by the solution of the following transcenden
equation:

Q~d2dp!Q~F̂!e2Eg~d!51, with Q5
al0dp

nv0
, ~48!

where

Q~F̂!5
1

2
~A114F̂21!5H F̂1/21O~1!

F̂1O~F̂2!

for F̂@1

for F̂!1.
~49!

In general Eq.~48! must be solved numerically to obtain th
layer spacing as a function of the concentration of inclusio
However, the inverse function has an analytical solution:

F5
1

Q~d2dp! S 11
eEg

Q~d2dp! D . ~50!

If F̂!1, which corresponds toeEg!Q(d2dp), no aggre-
gates are formed and Eq.~44! is recovered. In the opposit
case whereF̂@1, the inclusions form aggregates and t
dependence of the layer spacing on the concentration o
clusions is no longer a power law:F.eEg/„Q2(d2dp)

2
….

In the two limits of high and low concentration of inclusion
this relation can be approximated byF.eE0/(Q2d2) for
d@dp andF.1/„Q2(d2dp)

2
… for d→dp . It is interesting

to compare these scaling results with the corresponding
sult for independent particles~no aggregation! Eq. ~44!. The
different scaling can be attributed to the fact that the agg
gation reduces the influence per particle because the m
aggregation number varies with the concentration.

As in Sec. III B 2, aggregation is predicted only if th
variableF̂ is bigger than 1. The conditionF̂@1 with F!1
requires the typical energyE0 to be severalkBT. With typical
values ofE0.8kBT, only weak aggregation is observed
-
l

s.

n-

e-

e-
an

the lamellar phase~the mean aggregation numbern̄.2 for
d05200, dp550, andF52%!. If E0 is significantly bigger
than this value aggregation is stronger. Numerical analysi
Eqs.~46! and~50! shows regions of negative curvature in th
free energy as a function of the layer spacing in a cert
range of concentration of inclusions. As usual@29#, this in-
dicates a phase separation into a dilute and a more con
trated lamellar phase. This phenomenon is studied in m
detail elsewhere@30#.

Finally, notice that in the case of ionic surfactants, t
energy scale is much larger and the onset of the aggrega
process may show up in the concentration dependence o
layer spacing. Nonetheless, the relation between the la
spacing and the concentration of inclusions is quite differ
in the case of electrostatic repulsion, as can be derived f
Eq. ~3!.

IV. CONCLUSION

We have studied theoretically the behavior of partic
embedded in a lyotropic smectic phase. The particles exe
force on two adjacent membranes, inducing a local chang
the layer spacing~pinching or swelling depending on th
boundary conditions near the particles!. This pinch creates a
deformation field in the surrounding membranes, and he
interactions between inclusions. Our treatment of this de
mation involves a continuous description of the lamel
phase based on the Landau–de Gennes smectic Hamilto
This is appropriate to describe any type of smectic-A lamel-
lar phase over length scales much larger than the layer s
ing. We have focused on three common molecular structu
for the lamellar phases: a dilute lamellar phase in a bin
mixture of solvent and neutral or ionic surfactants, and
lamellar phase formed in a melt of symmetric diblock c
polymers. The lamellae formed by the surfactants are kno
to be highly flexible and the stability of such a phase
insured either by the Helfrich steric repulsion in the case
nonionic surfactants or by electrostatic repulsion between
bilayers in the case of ionic surfactants. In the copolym
case, the characteristics of the phase are dictated by th
terplay of the stretching of the polymer chains and t
chemical incompatibility of the two blocks. In the case
nonionic surfactants, the bending modulus arises only fr
the steric repulsion between fluctuating membranes an
generally quite low. Large compression moduli are obser
in both ionic surfactant and diblock copolymer lamell
phases.

The deformation field around each particle turns out to
similar to the deformation field due to a dislocation in
smectic liquid crystal. The deformation field is exponentia
damped along the membranes~the decay length being th
characteristic smectic penetration lengthl! and decays
slowly ~1/z! in the direction normal to the lamellae. Th
smectic energy associated to the deformation is a quad
function of the magnitude of the deformation induced by t
particles. The membrane-mediated interaction between
ticles is characterized by the parabolar 254lz. The interac-
tion is repulsive inside the parabola, and becomes attrac
outside.

The stored elastic energy of two particles close to e
other in the same layer is almost the same as the en
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4404 55P. SENS, M. S. TURNER, AND P. PINCUS
associated to one particle~Fig. 3!. Since it is twice as much
for two particles far apart, aggregation reduces the total e
tic energy. A balance between this and the entropy of
particles leads to the formation of aggregates at sufficie
high concentration of particles. For small aggregates
elastic energy associated with the deformation of the m
branes is almost insensitive to the aggregation number.
larger aggregates, the energy increases with the perimet
the aggregates, i.e., as the square root of the aggreg
number. The transition between these two behaviors oc
for an aggregation numberng , which may easily be of the
order of 100. This behavior leads to an aggregation proc
reminiscent of the formation of wormlike micelles in a su
factant solution. At very low concentration the particles a
independent and no aggregates are observed. As the co
tration increases, the chemical potential of the particlesm
decreases and aggregation starts. Whenm reaches the value
1/ng , the aggregates are of size close tong . One can theo-
retically increase the concentration to the critical valuem50
where the size of the aggregates diverges discontinuously
this point very large disks of particles are formed in t
lamellar phase and phase separate. However, this cri
concentration is often much higher than the concentra
limit and may thus often be inaccessible. The aggrega
occurs at volume fractionsF for which F̂ @5FeEg; see Eq.
~39!# reaches values significantly higher than 1. Thus
aggregation to be observed in the physically relevant reg
whereF,1, one needs the energy scaleEg to be several
kBT. Only weak aggregation is predicted in sterically sta
lized lamellar phases whereEg is of order a fewkBT, but
aggregation may be expected to be much stronger in a
polymer lamellar phase as well as in lamellar phases st
lized by electrostatics.

We have studied the influence of the particles on the f
smectic free energy. The elastic energy@}~d2dp!2# tends to
change the layer spacing while the compressibility of
smectic due to the repulsion between membranes opp
this effect. The balance of these two interactions leads to
equilibrium thickness that depends on the concentration
particles. For independent particles withd02dp.0, this de-
pendence is found to bed2dp;1/C in the Helfrich regime
@Eq. ~44!#. We suggest that the inclusion of proteins in t
phase may lead to phase separation into a more dense la
lar phase and pure solvent.

The formation of aggregates has a strong influence on
behavior of the lamellar phase. If aggregates of a w
defined size are formed the inclusions could still be cons
ered as independent particles by a simple renormalizatio
the size and concentration. But since the mean size of
aggregates in the lamellar phase is a function of the con
tration of inclusions, the relation between the layer spac
and the concentration gives information on the aggrega
process.
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APPENDIX

In Secs. II and III we found it necessary to include
microscopic cutoff when evaluating certain integrals overz.
We used throughout the cutoffzc.d, which naturally arises
as a result of the breakdown of the continuum theory at
length scale. We call this the ‘‘continuum’’ cutoff. Howeve
one should also check to see if other aspects of the the
break down before this one. In particular the smectic Ham
tonian~5! contains only the leading order terms in an expa
sion of derivatives ofu. In general higher order terms@such
as (] z

2u)2# start to become significant when the lowest ord
terms]zu or l¹ r

2u are of the order of unity. Thus there i
another ‘‘smectic’’ cutoff that corresponds to the value ofz
when these lowest order terms are of the order of unity. If
the inclusions only weakly deform the membrane, by wh
we mean ud2dpu&d, then the smectic cutoff is alway
smaller than, or of the order of, the continuum cutoff. Th
validates our use of the continuum cutoffzc.d throughout.

For a single pointlike particle the deformation field w
calculated in Sec. II A and is given by Eq.~10!. It is a simple
task to calculate the maximum values of]zu and l¹ r

2u,
which depend on thez cutoff. We find that in the weak
deformation regimedp/d&1 the smectic cutoff is small
zc.@ u(d2dp)u/d#1/3d&d. For completeness we also calc
late the smectic cutoff in the opposite regimedp/d@1, which
would correspond to, e.g., colloidal particles with a rad
much bigger than the layer spacing. In this case the sme
cutoff is more restrictive than the continuum one and
given byzc.@(d2dp)/d#1/2d. Systems for whichdp/d@1
are not considered in the present work.

We can also check the case of a disklike aggregate.
instead use Eqs.~25! and ~20! and find

e5
]u~r ,z!

]z
5l¹ r

2u~r ,z!5D]zE dxJ0S x r

aD J1~x!e2~x/xz!
2

.
Dl

a2 E
0

xz
x2J0~x!J1~x!dx, ~51!

wherexz[a/Alz. The integral is evaluated at the edge
the aggregate (r.a) where the deformation is the largest.
the physically important limit of large aggregate
x(z)@1e.u(d2dp)/zu. The smectic theory breaks down fo
e*1 corresponding to a cutoffzc.d2dp . This is of the
same order as the continuum cutoff in the weak perturba
regimedp/d&1. Although the smectic cutoff can be larger
the opposite casedp/d@1 such systems are again not co
sidered in the present work.



,
.

em

y

e

re

. I

i

rv

nd

ens.

r-

l
C,

-

r

d
th

s

55 4405PARTICULATE INCLUSIONS IN A LAMELLAR PHASE
@1# For a recent review, seeMicelles, Membranes, Microemulsion
and Monolayers, edited by W. Gerlbart, A. Ben-Shaul, and D
Roux ~Springer-Verlag, Berlin, 1994!.

@2# F. S. Bates, and G. H. Fredrickson, Annu. Rev. Phys. Ch
41, 525 ~1990!.

@3# See, for example,Biological Membranes, edited by D. Chap-
man ~Academic Press, London, 1968!.

@4# J. Darnell, H. Lodish, and D. Baltimore,Molecular Cell Biol-
ogy ~Scientific American, New York, 1990!.

@5# H. Huang, Biophys. J.50, 1061 ~1986!; M. Goulian, R. Bru-
insma, and P. Pincus, Europhys. Lett.22, 145 ~1993!; K.
Palmer, M. Goulian, and P. Pincus, J. Phys.~Paris! 4, 805
~1994!; N. Dan, P. Pincus, and S. Safran, Langmuir9, 2768
~1993!; N. Dan, A. Berman, P. Pincus, and S. Safran, J. Ph
~Paris! 4, 1713~1994!; R. Netz and P. Pincus, Phys. Rev. E52,
4114 ~1995!; H. Aranda-Espinozaet al., Biophys. J.71, 648
~1996!; J.-M. Park and T. Lubensky, J. Phys. I6, 1217~1996!.

@6# R. Bruinsma, M. Goulian, and P. Pincus, Biophys. J.67, 746
~1994!.

@7# R. Bar-Ziv, R. Menez, E. Moses, and S. Safran, Phys. R
Lett. 75, 3356~1995!.

@8# See, for example, J. Darnell, H. Lodish, and D. Baltimo
Molecular Cell Biology ~Scientific American, New York,
1990!, Chap. 13, p. 525; H. Huang, Biophys. J.50, 1061
~1986!.

@9# V. Ponsinet, P. Fabre, M. Veyssie, and L. Auvray, J. Phys
~Paris! 3, 1021~1993!, and references therein.

@10# P. G. de Gennes and J. Prost,The Physics of Liquid Cristals,
2nd ed.~Oxford University Press, New York, 1993!.

@11# We only consider fluctuations that do not involve a change
the topology of the membrane~creation of holes or handles!.
The Gaussian curvature of the membrane is then a conse
quantity and the second curvature modulusk̄ is of no interest
~see Ref.@18#!.

@12# W. Helfrich, Z. Naturforsch.334, 305 ~1978!.
@13# W. Helfrich and R. M. Servuss, Il Nuovo Cimento3D, 137

~1984!.
@14# P. Pincus, J. F. Joanny, and D. Andelman, Europhys. Lett.11,

763 ~1990!; P. Higgs and J. F. Joanny, J. Phys.~Paris! 51,
.

s.

v.

,

I

n

ed

2307 ~1990!; J. L. Harden, C. M. Marques, J. F. Joanny, a
D. Andelman, Langmuir8, 1170~1992!.

@15# J. N. Israelachvili,Intermolecular and Surface Forces~Aca-
demic Press, London, 1985!.

@16# E. Freyssingeas, D. Roux, and F. Nallet, J. Phys. Cond
Matter8, 2801~1996!.

@17# M. S. Turner and J. F. Joanny, Macromolecules25, 6681
~1992!.

@18# S. A. Safran,Statistical Thermodynamics of Surfaces, Inte
faces, and Membranes, Frontiers in Physics~Addison-Wesley,
New York, 1994!.

@19# P. Sens and M. Turner~unpublished!.
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