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Particulate inclusions in a lamellar phase
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We study theoretically the effect of colloidal inclusions in a smectic liquid crystal. Our treatment is appro-
priate for any type of particle that exerts a small force perpendicular to the nearest layers. This force may either
be outward, forming a local “bulge,” or inwards, pinching the neighboring membranes together. We calculate
both the distortion field and associated energy due to one such inclusion, as well as the membrane mediated
two body interaction potential. Aggregation of particles to form polydisperse disklike assemblies is treated
using a simple Flory-Huggins theory. In this case there exists a characteristic aggregate/katiiuherex
is the usual characteristic smectic penetration lengthdaiscthe layer spacing. A novel feature of this system
is that “large” disklike aggregates of this size may be formed. There is no such length for disklike aggregation
in solution, where it is difficult to obtain aggregates much bigger than the particle size. Our treatment of
aggregation neglects interaggregate interactions studied in more detail elsewhere. In this approximation, we
find that for certain systems, such as strongly segregated copolymer melts and stacks of surfactant bilayers
stabilized by electrostatic interactions, some significant aggregation is occurring. On the other hand we predict
only weak aggregation in a stack of flexible surfactants bilayers governed by the Helfrich interaction. We use
our results, combined with a simplistic mean field theory, to study an inclusion driven binding transition.
[S1063-651%97)14803-9

PACS numbe(s): 82.65.Dp, 82.70.Dd, 87.180e

[. INTRODUCTION Since a lipid bilayer is a two-dimensional fluid in which
the inclusions are free to move one may expect interactions
Lamellar phases consisting of a stack of regularly spacetietween them to arise, perhaps leading to collective pro-

membranes are formed by many different classes of amcesses such as aggregation of proteins within the membranes.
phiphilic molecules. For example, lipid surfactants in solu-These phenomena have been observed in biological systems
tion self-assemble to form bilayer membranes. The hydro2nd are known to play an important role in controlling ex-
phobic tails of the surfactants form the internal part of thechange between the cell and the external mediin
membrane and are Shie|ded from the So|vent by the hydro_ Most of the theoret|cal WOI‘k n th|S f|e|d so far haS fo-
philic head groups found at the outer surfa¢gés Over a Water
wide range of temperature and concentration, these bilayers
stack together to form a lamellar phafeee Fig. 19)]. g;g g gg ; T T A
Lamellar phases can also be found in thermotropic systems ©1 30A 2004
such as diblockA-B copolymer melts. At sufficiently low 3 23 3 23 % l ¢ B
temperatures or high surface tension between the two blocks,
mesophases are formed containing regions rich inAtlzad ®)
B species. If the two blocks are of similar size the most
stable phase is a lamellar phase where layeré @ind B
blocks alternatdsee Fig. 1b)] [2]. The dilute surfactant
lamellar phase is of fundamental interest in the search for
simple physical models to describe certain biological pro-
cesses, such as those involving cell membranes. Biological
membranes are extremely complex but are, at the simplest
level, a lipid bilayer with many other molecules incorporated
[3]. If we are to hope to understand biological membranes 2
we need first to understand the properties of heterogeneous 1
membranes made up of a mixture of different surfactant mol-

ecules or containing embedded inclusions, such as proteins. ©
Furthermore, copolymers are commonly used for the blend-
ing and the compatibilization of different polymer mol-  FiG. 1. (a) Smectic liquid crystal in a dilute phase of surfactant

ecules. The introduction of particles in a diblock lamellar molecules.(b) Similar phase in a diblock copolymer me(t) The
phase might allow us to tune the properties of the phase imembranes are located using the Monge representation for the dis-
order to satisfy specific requirements. placement fieldu(r,z).
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cused on particles residing within a single surfactant memstrong thermal fluctuations leading to collisions between

brane[5], or on a pair of membranes pinched together eithemembranes. Since the total surface area of each membrane
by gap junctions(particles bridging two bilayers together can adjust itself freely the membranes have no surface ten-
[6] or by optical tweezer§7]. Hydrophobic colloids, for in-  Sion. Instead the shape of the membranes is controlled by

stance, may reside in the membrane interior, taking advart—)hrzzrcgfr‘éaftg\:fk r_nroiﬂ“;“f‘ [ig]I’LWhiﬁgsE Zrt] fﬁqri]tir%gn?fetps
tage of the protective shell formed by the hydrophilic heads[ures the quctuBations o);pthe rﬁe?nbrar;es lead to cgllisions

of the surfactants. The reorganizatiqn of the surfactant mo'betvveen neighboring layers, yielding an effective repulsive
ecules due to the presence of a foreign body and the assoglieraction called the Helfrich steric repulsiph2,13. The
ated cost in deformation energy have been investigated eXnteraction energy per unit volume is a function of the
tensively. Such work has yielded several interestingocal separation between layetsand is given by
predictions, including the possibility of a nonmonotonic in- )
teraction(force) between inclusions in the same layer as a U(d)=C T 1)
function of their separation. The possibility of ordered phase H kd®
in such systems has also been suggeliéd

Our aim in the present work is to understand the effect o
a general class of heterogeneities in a multilamellar syste
These include any heterogeneities that affect the local me

brane conforr;\wationpy eith;o]é.'r) pin;:hing neighboring meml— interaction described by Ed@l) tends to swell the lamellar
branes together, ofii) pushing them apart. For example, hase or, at fixed volume fraction of surfactant, leads to the
certain proteins are now thought to form bridges or junctionssftective compressibility of the phase. The compressibility

between two neighboring membranes, leading to them being,oqyjusB as well as the global bending modulus per unit
locally pinched togethel8]. Recent studies concerning this lengthK can be expressed by

type of junction in a two layer system have shown the exis-

tence of a membrane mediated interaction between the junc- By=T?(xd®), Ky=«/d, (2)
tions[6]. This is due to the effect that such junctions have on
the fluctuation spectrum of the membranes. It is also possibl@’
that similar bridging proteins could act to push neighboring
membranes apart, if they were larger than the layer spacin
Furthermore any colloidal particle that has a purely steri
interaction with the membrane will tend to increase the mea . .
membrane separation locally. Such colloidal particles should’’ as well as renormalize the bending constﬂﬁlé_l]. In the
include surfactant stabilized ferrite particles, such as thosgbsence O.f added _salt, the mgmbranes.are st|ffen.ed due to
used in ferrosmectic phaskg). We are able to study the two electrostatic repulsion and their fluctuations are highly re-

types of impurities described above within the same frameguce.d' tlnd thsthcasle :he th?If”Ch Ir(?DUIE'Ot\r:V IS complt()ately
work since, for small deformations, the smectic Hamiltonian®OMinated by the electrostatic repuision between membranes

is insensitive to the sign of the local deformation. Thus Weand for high surface density of charges, the compression and
bending moduli can be expressed by

need only to define the magnitude of the local deform&gion
for our predictions to apply to both caseég and (ii) above. B,,=T/(d?), Ki,=TII, (3)

It is convenient to use a continuum theory to describe the
behavior of smectic liquid crysta[40]. This description as- Wherel is the Bjerrum length of orde7 A in water[15] (thus
sumes that one can define a continuous deformation field fdr<d and Bj,,K;o>By,Ky). Some recent experimenf46]
the mean position of the membranes, neglecting their dishave cast doubt on the above predictions for the bending and
crete nature, which is valid for length scales larger than th&€ompressional moduli of charged surfactant lamellae. These
mean spacing between lamellae. For small deformatio@Xperiments suggest that the bending constant of one lamel-
fields, the smectic Hamiltonian can be written as an expanlaé x may not be as high as predicted. Note, however, that
sion to quadratic order in the deformation field of the lamel-the exact dependence of these constants is not important
lae. This involves two parameters that describe the bendingere.
and the compression of the lamellar phése bending and (iii) In a lamellar phase of diblock copolymffig. 1(b)]
compression moduliK andB). Such an expansion follows the bending and compression moduli arise from a balance
from the symmetries of the lamellar phase and is insensitiv®etween the stretching of the polymer chaias entropic
to the precise nature of the system. The two modQlindB effech) and the incompatibility of the two different blocks.
can be calculated via molecular parameters such as the benbe smectic parameteB andK can attain much larger val-
ing constant of a single surfactant bilayeor the sizeN of  ues than in the case of dilute surfactant phase, and depend on
each blocks of a copolymer molecule and the interfacial tenthe surface tensiony,g between the two blocks and on the
sion between the two blockg,g . sizeN of the blocks[17]:

Estimation of the bending and compression modulus can
be obtained for the examples cited above. The physical ori-
gin of the smectic parametefgspecially the compression with
modulusB) is quite different each case:

(i) In the case of lyotropic smectid&ig. 1(a)], the sur- h:Nz/g(V_a
factant molecules self-organize into bilayers that experience T

]whereCH is a numerical constant of order unity associated
ith the Helfrich theory,T is the temperature, and all ener-

ng‘ies are written inkg units throughout. Helfrich’s original
stimate12] of this constant i<C,,=37%/128. The repulsive

hered is the spacing between layers.

(i) In the case of ionic surfactants, which are most com-
only used in polar solvent, the repulsive Coulombic inter-
(ctions play an important role in the repulsion between lay-
rs and can dramatically increase the compression modulus

Ke=7vash, Bc=vas/h,

1/3
a, 4
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where h is the distance between two lamellae, which isthroughout the sample. While it is not clear that this kind of
equivalent to the thickness of the lamellae, and micro- mean-field treatment is entirely consistent with the noninter-
scopical sizgmonomer sizg acting assumptiofas discussed in more detail later)anis

In the following, the fluctuations of the membrane aroundnonetheless interesting to compare this result with the one of
their equilibrium position are integrated out and we will fo- Sec. IV B, where the formation of aggregates is taken into
cus on the mean scalar displacement of the memhréne) account, and leads to qualitatively different dependenag of
in the z direction, normal to the equilibriuntflat) layers.  with particle volume fractionb.
This is the so-called Monge representation for the displace-

ment field[18]. In this representation is zero everywhere at || poINTLIKE INCLUSIONS IN A LAMELLAR PHASE
equilibrium in the absence of any heterogeneifmsdefects
in the crystal structure which we neglect throughotthe We consider pointlike particles, or inclusions in a lamellar

spatial variation of the fieldi is parametrized by a vector in phase, that fix the local spacing between two membranes at
the plane of the equilibrium position of the membratiee  some valual .. This value would depend on, e.g., the size of
x-y plane r and a coordinate normal to this plangsee Fig. the bridging protein or colloidal particle discussed in Sec. I.
1(c)]. In a discrete representatiarn(r,z) would be replaced We approximate the spatial distributi¢density of particles

by the displacement of theth membraneu,(r). In Sec. Il p(r) by a sum of Dirac delta functions(r,z)zE{\ilﬁ(r
below we will calculate the equilibrium value ofr,z) inthe  —r;)8(z—z), where(r; ,z) is the position of theth particle
presence of heterogeneities. and A the total number of particles in the sample. The con-

The Hamiltonian of the lamellar phase is obtain by sym-straint introduced by the particles can be written in the con-
metry considerations. It is the so-called Landau—de Gennegnuous limit: 9 u|(r 2)= =(d—d,)/d. With a view to includ-
Hamiltonian for smectic liquid crystalgl0], where all the jng this constraint in the Hamiltonian we first integraté,u
terms compatible with the symmetry of the sample undefyer the sample:
translation and rotation have been kept up to the quadratic

order in the displacement and the lowest order in its deriva- u (d—d,)
tives: f d? f dzp(r,z g —const. (6)
Hto erJ dzE[(aZu)ZH\Z(Vfu)Z] (5) Hence this constraint can be introduced in the smectic
2 Hamiltonian Eq.(5) via a Lagrange multiplieg:
with

H=f dzrf dzg[(azu)2+)\Z(Vfu)2+,8p(r,z)azu].

- \/E ™

The last term in the Hamiltonian expresses the coupling be-

where\ is the smectic penetration length. tween the membranes and the particles. Since the Hamil-

The remainder of the paper is organized as follows: Intonjan is written only up to quadratic order, the effect of the
Sec. Il A we consider the influence of a single particle on theinclusion, as expressed by the coupling term, is similar to the
lamellar phase. We calculate the smectic deformation field effect of a spring between two adjacent membranes. The
Wthh is found to be significant inside a parabola defined bycoupling constang is related to the spring constant, and will
r?=\z. We calculate as well the total energy associated withhe chosen later on in order to satisfy the constraint on the
this deformation. We extend this work in Sec. Il B to derive |ayer spacindEq. (6)]. It should be mentioned that our con-
the indirect interactions between two particles mediated b¥traint is somewhat arbitrary. The paramegeran be viewed
the deformation of the lamellae. This interaction is non-as free parameter dependent on the microscopical details of
monotonic, and is characterized by the same parabola as thige particle-membrane coupling. The mean displacement
deformation field. It is repulsive inside the parabola and atfield due to the particles can be calculated by minimizing the
tractive outside. For two particles within the same interlayerHamiltonian Eq.(7) with the constraint Eq(6) (which cor-
region, the interaction is always attractive and may result inesponds to an integration over the fluctuations of the mem-
aggregation of particles in the lamellar phase. This is dispranes.
cussed in Sec. lll where we calculate the energy of an ag- The derivation is performed in Fourier space with the
gregate as a function of its aggregation number and developansform defined by
a simple Flory-Huggins theory to describe the aggregation
process. We then focus on the case of a dilute lamellar phase d?
of nonionic surfactants. Solvent can be expelled fairly easily f(r,z) j
from this type of phase, and in the particular case of particles
that pinch the membranes together, one can expect a “bin
ing transition” to occur at high enough concentration of par-
ticles. By assuming that the particles are noninteracting w
predict in Sec. IV A how the mean spacing between mem-
branes, as can be measured by scattering experiments, varies ,3 iq
with particle concentration. To do this we employ a mean- =5 2 22 7 Pq. 9
field theory in whichd adopts a mear(constant value 2 g;+A°q;

9 fqei(Qr'r+qu)' 8

QNhereqr and g, are the Fourier conjugates ofand z, re-
spectively. The Euler-Lagrange equation for the minimiza-
fion of the Hamiltonian Eq(7) yields
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FIG. 2. Deformation of the layers due to an inclusion in the
membrane. In this sketch, the particle is smaller than the layer spac- FIG. 3. Attractive interactions between two particles embedded
ing and pinches two membranes together. The lateral extension ofithin the same layera) Far apart, the cost in energy is twice the
the deformation is characterized by the parabblarz represented cost of a single particle(b) In close contact, the deformation is
by a dotted line. similar to the effect of a single particle.

terial very close to the inclusiofz|<z. (the so-called
“core” energy). With this cutoff included the deformation
energy takes the form

wherep, is the Fourier transform of the particle distribution
function.

This is a powerful relation. With it we can calculate the
deformation(and deformation energyf the membranes for B4 2
a given distribution of inclusions in the smectic. F1=ayKB(d—d,)%, (1D

where a is a numerical factor of order unity, the value of
which depends on the precise choice of the cutoff
[a=7(2/%), where the ratiaz/d=¢]. This energy is qua-
We first evaluate the smectic deformation field due to Adratic in the deformationl_dﬂ_, which means that the same
single pointlike particle at the origin. In this cag€r,z)  amount of energy is required either to pinch the membranes
=d(r,z) and its transfornp,=1. Using Eqs(8) and(9) we  or to swell them(if the particle is larger than the layer spac-

A. Deformation due to a single particle

can calculate the deformation due to a single particle: ing).
d2a.d i Note that in the case of membranes formed by neutral
u(r,z)zf 9r gz fqzz o elar surfactants for which the repulsion between layers is domi-
(2m)° 2(q;+\°qy) nated by the Helfrich repulsion, the deformation energy is of
(d—d_)d 2 orderkgT [see Eq(2)] and may be of the order of the core
4z 4\|Z|
B. Interaction between particles embedded in a lamellar phase
where the Lagrange multipligB=4=(d—d_)d\ is chosen Even for particles with no direct interactions the coupling
to satisfy the constraint Eq6) with N=1. between the particles position and the membrane deforma-

The deformatioru(r,z) is sketched in Fig. 2. One can see tion field introduces an effective interaction between the par-
that it is quickly damped in the radial direction and propa-ticles. This can be easily understood, at least for the special
gates over a long range in tizedirection. The effect of the case of two particles in the same layer, as shown in Fig. 3.
particle is significant within a parabola defined Ij=4xrz.  Two particles far aparfFig. 3@] each create deformation
A similar parabolic region for the deformation field is known fields and this costs roughly twice the deformation energy of
to exist near an edge dislocation in a smectic liquid crystalwhen they are very close togetHéig. 3b)]. One can thus
However, the precise form af is rather different for an edge €xpect an attractive interaction between particles, as pre-
dislocation[10] (which decays only asi~1/yz in the z  dicted in previous work6]. We study the interaction in a
direction). One can also remark that the overshoot charactetthree-dimensional stack of membranes below.
istic of the deformation profile of a two membrane system The Hamiltonian of a lamellar phase containing many
[5] is not observed here. The difference between the tw®articles[Eq.(7)] can be rewritten to emphasize the coupling
membrane and multimembrane systems is studied elsewhepgtween particles:
[19) d?qg,dq, B

The deformation of the membranes due to the inclusion :f 909, B (G2+ N2
costs a certain elastic energy, which is obtained by inserting (2m)3 27 '
Eq. (10) into the smectic Hamiltonian Ed5). The integral 3 2 2
overr converges but the integral overdiverges unless we _f d°q E B a; (12
introduce a microscopic lower cutoff,. We choosez,=d, (2m)3 2 4(q2+\2q7) PaP-a
which is the length scale at which the continuum smectic
theory breaks down. Furthermore, since the coordinaiar- The first integral is similar to the unperturbed smectic
responds to the position of the membrane, a particle=t ~ Hamiltonian (the change of variable fromu, to
interacts via two membranes at +d/2. As usuall10] we  ug—iB[d//(q 24 \%q ﬁ‘)]pq does not affect the calculation of
necessarily neglect the contribution to the energy from mathe partition function of the system, for exampl&his inte-

2

Ug—i P %
T2 g2 P
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FIG. 5. (a) Deformation field caused by a disklike particle of
lateral sizeas>/\d and of thicknesa. (b) 3D representation of the

FIG. 4. Interaction energy between two particlia unit deformation of the first layer

JKB(d—d,)?] as a function of their radial separati¢im unit of

the layer spacingl) for two numbers of layers separating them . . . . . . .
(third and fifth layers The interaction is nonmonotonic, attractive similar to the interaction between two dislocations in a smec-

at large distances. The transition between attraction and repulsion fie liquid crystal[20]. Itis attractive outside the parabola and

located on a parabolal=\z) characteristic of smectic liquid crys- P€COMeS repulsive inside. .
tals. The resuli(14) becomes unreliable fa¥r <\ d because of

the singular nature of the particle distribution. A more re-
fined approach, which involves a smoother particle distribu-
tion [21] slightly modifies the details of the short-range in-

second integral describes the membrane-mediated interaf&raction. For example, two particles in the same layer

tions between proteins and can be written in the space as Kperience monotonic a}ttractlon; see F'g'.3' Although the
convolution integral: form of the Green functiofEq. (14)] is obtained by using

the parameteB associated to the deformation due to a single
particle. A more refined approach would use the calculation
AH=f f d?r dz r’ dZ' p(r,2) of ,8(.5r,52) for two particles, bl_Jt would modify the Green
function only when the two particles are really close to each
other. These details are discussed elsewftg
The two-body interactions in the smectic have been stud-
ied in more detail elsewhef®1]. We notice that the attrac-
whereG(r—r’,z—2') is the real space Green’s function de- tive nature of the interaction between particles within the
scribing the interactions between particles with positionssame layer is likely to induce aggregation of particles if the
(r,z) and(r',z"). The Green'’s function can be evaluated ex-strength of the interaction is large enough to overcome the

gral vanishes if we neglect fluctuations and are only inter
ested in the equilibrium position of the membrari@s The

XG(r—r’',z—z")p(r',z2"), (13

actly: loss of entropy resulting form the aggregation.
2 2
G(or.62)= = JKB(d—d.)? e (,_ 0D lll. AGGREGATION OF INCLUSIONS
’ 4 ™ (62)? N IN A LAMELLAR PHASE
(6r)? We seek to describe the aggregation of particles in a
Xexp- girsar (14 |amellar phase using a Flory-Huggins theory. We assume

that these particles can reside in dense disklike aggregates of

any size. We first determine the deformation energy of such

an aggregate as a function of its sitiee number of particles

in the aggregaje Then we calculate the distribution of ag-

gregate sizes and their influence on the smectic phase as a
3function of the concentration of particles.

where or=|r—r’| and 6z=|z—2z'| define the distance be-
tween particles in the radial and thealirection. The fact that
Eq. (14) is poorly behaved in the limittz—O0 is again a
feature of our continuous description in which we invoke
microscopic cutoff size of the order of the layer spaaihig
the z direction. Two particles in the same layer can be

thought of as interacting via membranes locater=at- d/2. A. The deformation energy of a disklike aggregate
One should remark that the total energy of a system of two of n particles
particles includes as well the self-energy per partijecal- Each aggregate is treated as a dense disklike object of

culated previously. Note that the energy scale for the interzagiys a=b/n, wheren is the number of particles in the
actions, given by the fac.torﬂ(/4).\/@(d—d7,)2 and the en-  aggregate and the lateral size of the particle. This disk
ergy of an isolated particle, given by E(L1), are of the imposes a vertical deformation on the neighboring mem-
same order of magnitude. branes parametrized by a length[see Fig. %a)]. Specifi-

The interaction between particles is clearly nonmonotonicgjly for a disk located az=0 we impose the following
(see Fig. 4, nonetheless its behavior is still characterized byboundary condition fou(r,z=0):

the same parabola that we observed for the deformation of
the membranes in the presence of a single inclusion: u(r,z=0)=A, r<a and u(r,z=0)=0, r>a.
r?=4xz (see Fig. 2 Not surprisingly the interaction is also (15
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The parameteA will be chosen so that the perturbation of  The energy of the disklike aggregate then follows from
the closest layerfocated atz= *+d/2) is correctly related to Eq. (18) with x=qga a new dimensionless variable and
the particle sizel,,. Note that the boundary condition in Eq. x.=a/\\z.

(15) imposes a boundary condition on the layer spacing
and is thus of the same kind as the boundary condition Eq.
(6). For large enough aggregates \d the parameteA is
merely given byA=(d—d,)/2 where the factor 1/2 arises
from the symmetry in the plare=0. For smaller aggregates Roughly speaking the Gaussian exponential faefdf/*®’

F=KBA? f “xdx{J5(x) 26 9% (21)
0

a larger value ofA is required, as discussed below. in the integral introduces a cutoff &t=x.. This highq cut-
The displacement field and the energy of an aggregate aiif corresponds to small values pfsr .= \Az.. Thus ther
calculated using a two-dimensional Fourier transform cutoff arises as a direct consequence of the orze o which

it is related by the parabola of Fig. 2. Equati2l) can be

= d? . .
u(r,z)=j q2 Ug(2)€, (16) evaluated exactly22]:
o (2m) )
F= 1 o2y, (x22) (22
The Euler-Lagrange equation associated with the smectic 2 A
Hamiltonian Eq.(5) becomes _ - _ . _
wherel ; is the modified Bessel function of the first kind of

azuq(z) order 1. We now expand this result in the two linfisx,<1
T :)\Zq4uq(2) (178 and(ii) x;>1, corresponding to aggregatésmuch smaller
(i) much larger tham,, by an expansion of the Bessel func-
the convergent solution of which is, far0, tion [22]
S [x2+0(x3), for x<1
Ug(2)=Ug(0)e . (a7 hWOI=] 2m) V%e1+0(1)] for x>1. &
The smectic energy depends on the Fourier transform ah these limits the energy becomes
the boundary condition,(0) according to
[VKBA®XG  for x.<1
~ | VKBA%, for x.>1. (24)

f:Bf dzqf d2A2q4ug(0)|2e a2
V4
‘ This exprezssion implies that the energy is quadratic in the
N volumeAa“ for small disks and scales like the circumference
- ‘/ﬁf d*ag°*|uq(0)] e, (18 of the disk for large disks. The first of these results is under-
standable: The total distortion energy should scale with the
wherez.=d represents the microscopic cutoff in below  perturbation volumeAa? for small enough inclusions. Fur-
which the continuum elastic description of the smectic liquidthermore the lowest order contribution must be quadratic in
crystal breaks down. The contribution due to deformation orthis volume by symmetry. The second result is also to be
still smaller length scales contributes to the usual “core enexpected: For large enough disks there should be a contribu-
ergy” [10], which we do not attempt to include here. tion per unit length of edgét locally resembles a disloca-
The boundary condition on the disk possesses cylindricaiion). In order to fully understand the result E@4) we need
symmetry and the Fourier transform therefore naturally into chooseA so that the perturbation of the closest layers
volves Bessel functions. The boundary condition in Fourier(located atz=d/2) is related to the particle size according to
spaceuy(0) may be calculated from the real space conditionu(z=d/2,r =0)=(d—d)/2. Using Eqs(16), (17), and(20)
(16) using the inverse transform the deformation is given by

0 2m r
uq(z)zf rdrf déu(r,z)eiar cos U(f,Z)=Af de0<x E)Jl(x)ewxz)z, (25
0 0

°c wherex,=a/+\/\z. Evaluating this at =0, z=d/2 we find
:j 271 dr Jo(gr)u(r,z), (19

0 Aa%/(2nd) for a/yNd<1
whereJ, is the Bessel function of the first kind of order 0. A for a/yhd>1.
The Fourier transform of the boundary condition is given by (26)

u(0,d/2)=A(1— e &72Adyx [

HenceA is chosen as follows:

a ,J1(qa)
Ug(0)=A | 2ar dr Jo(qr)=27Aa qa (20
0

_[(d=drd/a®  for a/\ad<1 2
“ld-d)z for a/hds 1. 7
whereJ; is the Bessel function of the first kind of order 1. A

3D representation in the real space of the deformation of th&or small disks we need to choose the amplitide such a
first layers is shown in Fig. (b). way that the volume\a? is constant. It is reassuring that in
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a VAd variation of the layer spacing with the concentration of
N particles (compaction of the lamellar phasevill be dis-
cussed below. We will use a Flory-Huggins the¢Ba] to
model the aggregation process. The concentration of par-
ticles in the smectic phase B=A/V whereV is the total
volume of the phase anlf the total number of particle.

The global concentration of aggregates contaimnggar-
ticles is writtenc,, (for all integern). The conservation of the
total number of particles leads to

(@

> nc,=C. (30)
n=1

The two-dimensional entropy of mixing of these aggregates
is calculated via a lattice theory with an elementary lattice
i area on the membranes &. We can employ a three-
ny n dimensional treatment by defining the lattice volume in the
© smectic to be a slab of heiglot and areas? with volume
v=6°d, which ultimately corresponds to the volume of one

i i inclusion times the ratid/d .. The free energy of the lamel-
FIG. 6. Energy of the aggregates as a function of their $ae. If’:\r phase per unit volume is given by

For a small aggregate, the deformation is insensitive to the size o
the aggregateb) For a large aggregate, the deformation is linear w
with the size of the aggregaté) Schematic representation of the E= z c,
deformation energy with the aggregation number. The dashed line n=1
corresponds to the approximate expression used in the text.

: (31)

(o))
TIh—+E,
e

where we assume that the system is dilute so that the volume
the limit a—0 we recover the delta function representation offraction ®=Cv <1. The total free energy densify is com-
Sec. Il A. Substituting Eq(27) into (24) we finally obtain posed of two terms including the entropy of mixing of ag-
gregates of all sizes and the smectic deformation energy of
\/@(d—dw)2 for a/\Nd<1 aggregates of all sizes. Note that since the entropy of the
= JKB(d—d_)%a/\Ad for a/\Nd>1. (28) particles is effectively a two-dimensional entropy the term in
the logarithmc,,v/e is independent of the layer spacing. This
This result gives the enerdy,, of an aggregate containing  consideration will be important in the next paragraph.

individual particles The total particle concentration is fixed by a Lagrange
multiplier w. By considering the system to be in contact with
E n ; —nd/b2 a reservoir of particlesy may be thought of as the chemical
E={ " V n, or  n>n,=\ (299  Potential for exchange of particles between the reservoir and
the system itself. This must be chosen so that the constraint
E, for n<n, Eqg. (30) is satisfied. The chemical potential is defined
[with E,= JKB(d—d,)2], whereb is the lateral radius of "oUgN the grand, or Gibbs, potenttal[24],
one particle. o
This expression may be understood with the aid of Fig. 6: G=F+ >, nc,u. (32)
n=1

the layers in contact with the aggregate are deformed over a

length |\ d, even if the aggregate is much smaller than this _ _ .
size (n<n.); see Fig. 6. In this case the far field distor- Minimizing G with respect toc,, gives the concentration

tion, and associated energy, are insensitive to the size of tHf @99regates of size as a function of the chemical potential
aggregate. If, on the other hand, the lateral size of the aggré®

gate is much larger thaghd (n>n.), the energy is linear 1
in the size of the aggregate; see Figh)6 The resulting c,=— e En#n (33
variation of the deformation energy with the aggregation v

number is shown in Fig. ©). where here and below we adopt units in whigiT =1. Note

that the sign ofu is unusual. It is positive at low concentra-
tion of particles and decreases as the concentration increases.
In this section we will construct a simple model to de- As mentioned above. can then be determined by the con-
scribe the aggregation of inclusions in the smectic phaseservation relation Eq(30). Low inclusion concentrations
Interactions between inclusions will be included only by waycorrespond to high values of the chemical potential. The
of the aggregation process itself and we will neglect interacehemical potential decreases as the concentration increases,
tions between aggregates. We first assume that the charactarith the concentratiorC eventually reaching a saturation
istics of theL , phase(layer spacing, compressibility, etc. valueCg,, for which u=0. If yet more particles were to be
are not affected by the presence of inclusions. The possibladded to the system we envisage these residing in a second

B. Aggregation of inclusions in the lamellar phase
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phase of dense particl€¢snfinite” disklike aggregates; if w  ceded by the high concentration limdt~1. On the other
were ever to become negative the concentration of the largeband ®.,=C.,p» may be smaller than unity in the case of

aggregates would diverge as-x; see Eq.(33). ionic surfactant and of copolymer lamellae.
The free energy densitiF of the entire system ikgT
units is given by substituting Eq33) into Eq. (31): 2. Low particle concentrations
Here we are interested in the limit where the particle con-
F=—(uC+Cayy, (34) P

centration is small enough so that there are very few aggre-

where C,g, is the total concentration of aggregates of all 9at€s larger tham,. This corresponds tqu>1/n, (with

sizes. BothC,qqand the average number of particle per ag-N,>1) and probably covers the major range of concentration
gregate, written as, are fixed byc, according to accessible experimentally. While we are interested in the re-

gime where there are very few aggregates larger thawe
* make no assumptions concerning the mean aggregation num-
Cagg™ 2 Cn (35 ber n and avoid making the continuum approximation. In
n=1 this case we evaluate the summations in Eg6) and (35)
using the result33) and obtain the relations

and
o C - £ e_M “ B E e_ﬂ
= db=Ppe~r»=——"—, I, =C etry= ,
n Caggl (36) (1 _ ei'“)z agy agd) 1 _ e—’u
respectively. If the average aggregation number is large P 1
enough(n>1) a continuum representation may also be used, P T 1—er (39

in which the sums are replaced by integrals. However, we agg

choose to retain the discrete description in Sec. Il B? iMwe can invert the relatioriD(,u) to find the chemical poten-
order to be able to treat correctly the onset of aggregation. P

1. Saturation of the lamellar phase &1_1’24—0(&3‘3’2) for &)>1

The saturation values &, Cyqq, andn_ca_n be calculated p==InR(®)=1 _ Ind+O(d) for d<1, (40)
from Egs.(30), (35), and(36) within a continuum approxi-
mation by settingu=0 in Eq.(33) and by using Eq29) for  where
the energyE, of the aggregates:

1+2x—+1+4x

R(x)= 2X

ny . n, (41)
Csatzje yfl(Ey) Cagg,sat:je yfz(Ey)y

In the limit of very low concentrationb <1 there is essen-

n_satznyfl(Ey)/fz(Ey), (37)  tially no aggregation, the particles are independent and the
o chemical potential satisfies the ideal gas law: —E —In®.
wheref, andf, are polynomials in B, The aggregates are instead largeri<n,, for intermediate
concentrations <E<I><n§. In this case our results are iden-
f,(E)= EJF 1_2+ £+ EJF } (383 tical to those describing the size distribution of wormlike
“UE) B B, E, 27 micelles, whereE,, corresponds to the scission energiye

cost of creating two end caps on the wori6]. The worm-
2 like and disklike descriptions only diverge whénzni and
fo(E,) = Tttt (38D disks with sizem=n,, start to appear. At this point the en-
Y 4 ergy per diskE,, is no longer constant; see E@9).

In deriving Eq.(37) we have also implicitly assumed that the As a first apprOX|mat|pr!, we assume that the inclusions do
volume fraction®,,=Cp<1, i.e., that saturation occurs not a_ffect _the characteristics of the lamellar _ph_ase, the layer
before the volume fraction of occupied sites approaches it8Pacingd is kept constant as the concentratiOrincreases.
close packing value. The continuum approximation usedignificant aggregation can occur if the variatile: der is
above is a good one provided that the characteristic aggreghigger than 1. For this to occur witdb<1, the energy
tion numbern,, is much larger than unity. This needs not E,= Eo(d—d,)?d* has to reach sever&gT. The energy
correspond to a particularly strong experimental constraintEqo=a\KoBod? can be evaluated in the typical cases con-
For example, the FlochE protein [25], which is a typical sidered so far. In the case of a dilltg phase of nonionic
bridging inclusion, has a laterdprojected area of 500 A surfactants stabilized by the Helfrich steric interaction,
In a phase of membranes with a bending modwusf the ~ E,=a/C4T is independent of the bending modulus of the
order of a fewkgT this leads to characteristic aggregation membranesc and depends mainly on the numerical factor
numbersn,=100. The same typical numbers are found for aintroduced in Eq(11). This energy is of order a fewT and
lamellar phase of diblock copolymers and of ionic surfac-only weak aggregation is to be expected in this case. In the
tants. The reference enerdy, [Eq. (11)] is rarely bigger case of a diblock copolymer lamellar phase, the en&gis
than a fewkgT for nonionic surfactant systems, in which proportional to the surface tension between the two blocks
case the saturation concentratidr= C., may often be pre- yag [EQ. (4)] and can easily reach BET. In this case, sig-
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nificant aggregation may occur for low volume fraction of assumption is rather crude in that it probably requires that
inclusions. In the case of highly charged membranes, formethe particles’ deformation fields are at least starting to over-
by ionic surfactants, the energy is larBg=(d/I)T and ag- lap significantly, in which case the noninteracting assump-
gregation is to be expected. tion is already starting to break down. However, a treatment
Finally, let us remark that the so-called core energy assobased on this kind of mean field assumption does seem a
ciated, for instance, to a possible reorganization of the sumatural choice for a preliminary study of these systems. We
factants around the inclusion, may renormalize the chemicakill also make a simplifying assumption regarding the phase
potential. This effect tends to favor aggregatighe self- behavior. We assume that whdr<d, two phases exist and
energy of each particle being increased by the core ehergyhey correspond to a smectic, with layer spadingccupying
but is not expected to be a sufficiently important effect toa volumeV, and pure solvent in the remaining volume

alter our conclusions. V,—V. Reassuringly recent experimeff5] on just such a
system report a separation into a dense lamellar phase and an
IV. “BINDING TRANSITION” IN A LAMELLAR PHASE almost pure solvent phase. A calculation of the full phase
CONTAINING JUNCTION PARTICLES behavior probably also requires an improvement of the

mean-field treatment and is beyond the scope of this work.
A lyotropic lamellar phase formed from a dilute solution Within this model the free energy df independent particles
of surfactant can be found in both a bound and an unboung given by
phasd 27]. The transition between the two phases is usually
driven by the Van der Waals interaction. Below a critical do)? ,(d—d;\?
value of the Hamaker constant, the lamellar phase is un- F= VBOVO(E +‘IN\/KoBodo( g ) .43
bounded and the layer spacing is fixed only by the global

concentration of surfactants. If the Hamaker constant igp this expression, we have expressed explicitlydtaepen-
above the critical value, a bound lamellar phase can be olyence of the various terms by using the relations(2g.The
served. The value of the layer spacing is then fixed by theengthd, represents the layer spacing in the smectic free of
balance between the Van der Waals attraction and, for exarticles, andX, designates the value of whend=d,. For
ample, the Helfrich repulsion between the layers in the casgxample, the volume of the smectic-rich phase can be written
of nonionic surfactants. In the case of charged bilayers in thgsy = (d/d,) if the number of layers in the lamellar phase
absence of salfunscreened electrostatic interactipms- s kept constant during the compression. The first term in Eq.
cussed in the Introduction, the repulsion between the Iayer@g) represents the pressure resisting a global reduction in
is much stronger than in the Helfrich regime. For layer spacthe |ayer spacing. In the absence of any attractive interaction
ing larger than the bilayer thickness, the Van der Waals athetween the membranes the layer spacdipgs fixed by the
traction cannot overcome the repulsion and the lamellafinite surfactant concentration in the sample. The second
phase is always in the unbound state. In the case of a deng&m is quadratic in the difference between the layer spacing
lamellar phase of diblock copolymer, the compaction effecly and the relevant particle dimensiah,. It is attractive if
should be negligible because of the absence of solvent. 4 —q, j.e., for the bridging inclusions discussed in Sec. I,
We present below a study of the compaction of an unn( in this case acts to lower the spacih@hed spacing is

bound lamellar phase driven by bridging inclusions. obtained by simple minimization of E¢43):
A. Nonaggregating particles 14
d(Co)—dr=—— =, (44)
We first consider\ independent particles. The deforma- 0 akod, Co

tion energy due to each particle is expressed by the energy ) ) ) )
F, derived in Sec. I[Eq. (11)]. The energy is of course Where Co=AMIV, is the concentration of particles in the

minimal if the layer spacing isl,., however, such a global Sample and where the penetration lenyts K/B can be
compression of the sample would lead to a large increase ietermined with Eqs(2) and(5). This result only gives the
collisions between membranes and thus to a large cost iforrect layer spacing #l(Co) <d, whered, is the maximum
compression energy. We account for this fact by writing thelayer spacing set by the surfactant concentration. Setting

total energy of the., phase as follows: d(Cy)=d, we calculate the smallest concentrati@g for
which the layer spacing can be expected to vary v@th
F=vBV+NF,, (42)  according to Eq(44). This concentration defines an average

in-plane particle separatioh according toCoL2%d,=1. We
where the first term of the right hand side is the energy of d@ind L= Valv(dy—d,)d,Cp°«IT. For typical values of
global compression and wheneis a numerical factor of the parametersa=8, v=1/12, C,,=37%/128, dy=200 A,
order 1[28]. d_=50 A, and«=10 T, the lateral separation of particles is

_ The layer spacing of the phase without inclusiaksis | <4000 A=4\\,d,. At these separations interactions
fixed by the total volume of the sampl,. The balance may start to become significant.

between the Helfrich repulsive force and the particle induced
attraction leads to a binding transition at some particle con-
centrationC. For C> C the equilibrium spacing in the smec-
tic phased is smaller thand, and varies with the particle We now include the results concerning the particle aggre-
concentration. We employ a mean-field treatment in wikich gation(Sec. Il)) in our treatment of compaction of the lamel-
adopts a constant mean value throughout the smectic. Thiar phase.

B. Aggregating particles
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Using Eq.(34), we can write the free energy density of the lamellar phaséthe mean aggregation numbe=2 for
the entire system ikgT units as dy=200,d,.=50, and®=2%). If E, is significantly bigger
than this value aggregation is stronger. Numerical analysis of
Egs.(46) and(50) shows regions of negative curvature in the
free energy as a function of the layer spacing in a certain
- range of concentration of inclusions. As us{29], this in-
For low concentrations® <1) there is little aggregation dicates a phase separation into a dilute and a more concen-

and the relation Eq(44) must be recovered. For higher con- trated lamellar phase. This phenomenon is studied in more
centrations the layer spacimyjis obtained by minimization detail elsewher¢30].

do\ 2
F=vBO(H) —(uC+Cpg- (45)

of the total free energy density EG5) using the results of  Finally, notice that in the case of ionic surfactants, the
Eq. (39). energy scale is much larger and the onset of the aggregation
2 process may show up in the concentration dependence of the
= VB()(% +C[InR(<i))— 1+ R(&))], (46) Iayer_ spacing. Nonetheles;, the _relatiqn bgtwegn the layer

d spacing and the concentration of inclusions is quite different

o . in the case of electrostatic repulsion, as can be derived from
where the reference energy, is itself a function of the layer gq (3).

spacing
2 d—d,|? IV. CONCLUSION
E,=aVKB(d—d,) =E0( T -
We have studied theoretically the behavior of particles
with (47) embedded in a lyotropic smectic phase. The particles exert a
force on two adjacent membranes, inducing a local change in
Eozamdg_ the layer spacingpinching or swelling depending on the

boundary conditions near the partigle$his pinch creates a
The equilibrium layer spacing in the smectic phase is theredeformation field in the surrounding membranes, and hence
fore given by the solution of the following transcendentalinteractions between inclusions. Our treatment of this defor-
equation: mation involves a continuous description of the lamellar
phase based on the Landau—de Gennes smectic Hamiltonian.
alod This is appropriate to describe any type of smeégtitamel-
, (48) lar phase over length scales much larger than the layer spac-
ing. We have focused on three common molecular structures
where for the lamellar phases: a dilute lamellar phase in a binary
R R mixture of solvent and neutral or ionic surfactants, and a
-1 ®Y2+0(1) for d>1 lamellar phase formed in a melt of symmetric diblock co-
QP)=75 (Vi+4d-1)= d+0O(d?) for d<1. polymers. The lamellae formed by the surfactants are known
(49  to be highly flexible and the stability of such a phase is
insured either by the Helfrich steric repulsion in the case of
In general Eq(48) must be solved numerically to obtain the nonionic surfactants or by electrostatic repulsion between the
layer spacing as a function of the concentration of inclusionsbilayers in the case of ionic surfactants. In the copolymer
However, the inverse function has an analytical solution: case, the characteristics of the phase are dictated by the in-
terplay of the stretching of the polymer chains and the
chemical incompatibility of the two blocks. In the case of
nonionic surfactants, the bending modulus arises only from
~ the steric repulsion between fluctuating membranes and is
If &<1, which corresponds t€F»<®(d—d,), no aggre- generally quite low. Large compression moduli are observed
gates are formed and E(4) is recovered. In the opposite in both ionic surfactant and diblock copolymer lamellar
case whereb>1, the inclusions form aggregates and thephases.
dependence of the layer spacing on the concentration of in- The deformation field around each particle turns out to be
clusions is no longer a power lawb=efv/(®%(d—d,)?). similar to the deformation field due to a dislocation in a
In the two limits of high and low concentration of inclusions smectic liquid crystal. The deformation field is exponentially
this relation can be approximated Wly=eFo/(®2d?) for  damped along the membranébe decay length being the
d>d_ and ®=1/(0*d—d_)? for d—d_. It is interesting characteristic smectic penetration lengih and decays
to compare these scaling results with the corresponding reslowly (1/z) in the direction normal to the lamellae. The
sult for independent particlgso aggregationEq. (44). The  smectic energy associated to the deformation is a quadratic
different scaling can be attributed to the fact that the aggrefunction of the magnitude of the deformation induced by the
gation reduces the influence per particle because the meaarticles. The membrane-mediated interaction between par-
aggregation number varies with the concentration. ticles is characterized by the parabofa= 4\z. The interac-
As in Sec. lll B 2, aggregation is predicted only if the tion is repulsive inside the parabola, and becomes attractive
variable® is bigger than 1. The conditiof>1 with ®<1  outside.
requires the typical enerdy, to be severakgT. With typical The stored elastic energy of two particles close to each
values ofE,=8KkgT, only weak aggregation is observed in other in the same layer is almost the same as the energy

0(d—d )Q(d)e E+D=1, with ©=

eFy

M eE—d)

1

= Ga—d

. (50
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associated to one partic(€ig. 3). Since it is twice as much and P.P. received support from the National Science Foun-
for two particles far apart, aggregation reduces the total eladation, Grant No. 8-442490-21795 and from the MRL pro-
tic energy. A balance between this and the entropy of thgram of the NSF under Contract No. DMR-9123048. M.S.T.
particles leads to the formation of aggregates at sufficientlycknowledges financial support by the Royal SocietK.).
high concentration of particles. For small aggregates the
elastic energy associated with the deformation of the mem-
branes is almost insensitive to the aggregation number. For APPENDIX
larger aggregates, the energy increases with the perimeter of
the aggregates, i.e., as the square root of the aggregation In Secs. Il and Il we found it necessary to include a
number. The transition between these two behaviors occumicroscopic cutoff when evaluating certain integrals oxer
for an aggregation number,, which may easily be of the We used throughout the cutaff=d, which naturally arises
order of 100. This behavior leads to an aggregation procesgs a result of the breakdown of the continuum theory at this
reminiscent of the formation of wormlike micelles in a sur- |ength scale. We call this the “continuum” cutoff. However,
factant solution. At very low concentration the particles areone should also check to see if other aspects of the theory
independent and no aggregates are observed. As the concejleak down before this one. In particular the smectic Hamil-
tration increases, the chemical potential of the partigles tonjan(5) contains only the leading order terms in an expan-
decreases and aggregation starts. Wheeaches the value sjon of derivatives ofi. In general higher order ternjsuch
1/n,, the aggregates are of size closentp One can theo- as (92u)?] start to become significant when the lowest order
retically increase the concentration to the critical vali'eO  termsa,u or AV 2u are of the order of unity. Thus there is
where the size of the aggregates diverges discontinuously. Adnother “smectic” cutoff that corresponds to the valuezof
this point very large disks of particles are formed in thewhen these lowest order terms are of the order of unity. If the
lamellar phase and phase separate. However, this criticghe inclusions only weakly deform the membrane, by which
concentration is often much higher than the concentrate¢e mean|d—d, |<d, then the smectic cutoff is always
limit and may thus often be inaccessible. The aggregatiomaller than, or of the order of, the continuum cutoff. This
occurs at volume fraction® for which ® [=®e®»; see Eq. validates our use of the continuum cutaft=d throughout.
(39)] reaches values significantly higher than 1. Thus for For a single pointlike particle the deformation field was
aggregation to be observed in the physically relevant regimealculated in Sec. Il A and is given by EQ.0). It is a simple
where <1, one needs the energy scdlg to be several task to calculate the maximum values @fu and AV ?u,
kgT. Only weak aggregation is predicted in sterically stabi-which depend on the cutoff. We find that in the weak
lized lamellar phases whete, is of order a fewkgT, but  deformation regimed,/d<1 the smectic cutoff is small,
aggregation may be expected to be much stronger in a cg =[|(d—d,)|/d]*3d=<d. For completeness we also calcu-
polymer lamellar phase as well as in lamellar phases stabjate the smectic cutoff in the opposite regichgd>1, which
lized by electrostatics. would correspond to, e.g., colloidal particles with a radius
We have studied the influence of the particles on the fregnuch bigger than the layer spacing. In this case the smectic
smectic free energy. The elastic enefgyd—d,)?] tends to  cutoff is more restrictive than the continuum one and is

change the layer spacing while the compressibility of thegiven by z.~[(d—d,)/d]*?d. Systems for whichd /d>1
smectic due to the repulsion between membranes opposgge not considered in the present work.

this effect. The balance of these two interactions leads to an \we can also check the case of a disklike aggregate. We

equilibrium thickness that depends on the concentration ofstead use Eq$25) and (20) and find

particles. For independent particles with—d >0, this de-

pendence is found to bé—d_~1/C in the Helfrich regime

[Eq. (44)]. We suggest that the inclusion of proteins in the  5(r 2)

phase may lead to phase separation into a more dense lamed= 9z

lar phase and pure solvent.
The formation of aggregates has a strong influence onthe A) [x,

behavior of the lamellar phase. If aggregates of a well- =—7 X2Jo(x)J1(x)dX, (52)

defined size are formed the inclusions could still be consid- 0

ered as independent particles by a simple renormalization of

the size and concentration. But since the mean size of the B ] ]
aggregates in the lamellar phase is a function of the concenftherex,=a/ VAz. The integral is evaluated at the edge of

tration of inclusions, the relation between the layer spacingihhe aggregatere=a) where the deformation is the largest. In

and the concentration gives information on the aggregatiof’® Physically important limit of large aggregates
process. X(z)>1le=|(d—d,)/z|. The smectic theory breaks down for

e=1 corresponding to a cutof,=d—d_. This is of the
same order as the continuum cutoff in the weak perturbation
regimed _/d=<1. Although the smectic cutoff can be larger in

We would like to thank J. B. Fournier, D. Morse, J. Prost,the opposite casd_/d>1 such systems are again not con-
and W. Urbach for stimulating and helpful discussions. P.Ssidered in the present work.

2 r —(x/Ix )2
=AVU(r2)=Ad; | dxdo| X | Ju(x)e Xl
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